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PREFACE

During the Academic Year 1982-83 the Mathematics Department at the University
of Wyoming sponsored a special year devoted to the mathematics of energy. In light
of the abundance of energy and mineral resources in Wyoming, and the resultant impor-
tance of the State in the nation's long-term energy outlook, it seems only natural that
one should emphasize on campus the importance of mathematical modelling and analysis
in energy exploration and production as well as in the associated environmental con-
cerns. Indeed, besides serving as an introduction for both faculty and students to po-
tential research areas in mathematics, the emphasis on physical applications and origins
of problems provides an interdisciplinary forum for faculty and students from many
other science and engineering departments.

As evidenced by the list of participants and the short-term visitors in the Special
Lecture Series, the Energy Year program stressed the close cooperation between
mathematicians in academia and those in industry, as well as interaction with mathe-
matical researchers in other areas of science and engineering.

The major areas discussed in courses, seminars, and the visiting lecture series can
be loosely grouped under the following five headings: (1) Mathematical modelling re-
lated to hydrocarbon recovery, flow in porous media, combustion and chemical reac-
tors. (2) Mathematical analysis of coupled systems of nonlinear partial differential
equations. (3) Numerical analysis of transport-dominated flow in two and three
dimensions. (4) Computational algorithm development for large, sparse, nonlinear,
nonsymmetric systems of equations. (5) Inverse problems, especially related to reflec-
tive seismology and geophysical prospecting.

The papers appearing in this Proceedings are quite varied in nature, some are
expansions of topics presented in the Energy Year Lecture Series, and others represent
recent research on a subject appropriate to these Proceedings. The reader interested
in a more systematic expository development of the general subject matter is referred
to the first three volumes of the new SIAM series Frontiers in Applied Mathematics.
Volume 1, edited by Dr. Richard Ewing, deals with the mathematics of reservoir simu-
lation; Volume 2, edited by Dr. John Buckmaster, concerns combustion and chemical
stability; and Volume 3, edited by Dr. Robert Burridge, treats seismic exploration and
inversion. It should be mentioned that these volumes are, in part, also an outgrowth of
the Special Energy Year at Wyoming.
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viii PREFACE

It is a pleasure to express our gratitude to all who made this special year possible
and contributed to its success, including the participants and visitors from academia
and industry who gave generously of their time and effort and to the authors who con-
tributed to this volume. Special thanks are due to several individuals. Dr. Richard E.
Ewing, the J. E. Warren Professor of Energy and Environment, organized the scientific
program and served as a focus for the year's activities. My colleagues, Professors John
George, Eli Isaacson, and Duane Porter provided invaluable help. Their efforts during
the year were unflagging. | would like to express appreciation to SIAM for its encour-
agement and support of these Proceedings and to the Rocky Mountain Mathematics
Consortium for sponsoring the two summer schools that inaugurated and capped the
Energy Year, respectively, Funding for the Energy Year was generously provided by
the Mobil Foundation, the National Science Foundation, and the University of Wyoming.

Finally, to close on a personal note, this Special Year in Mathematics Related to
Energy launched a period of expansion and development at the University of Wyoming
in applied mathematics and interdisciplinary mathematical research on energy and
environment. Whatever success will be achieved is due in large part to Dr, L. Milton
Woods, Executive Vice President of Mabil Oil Corporation, whase support has been cru-
cial and inspirational. 1t is a pleasure to be able to record in a formal way our great
appreciation to him,

Kenneth I, Gross
University of Wyoming
June, 1984
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ON THE NUMERICAL SOLUTION OF CONVECTION DOMINATED
CONVECTION-DIFFUSION PROBLEMS

O. AXELSSON*

Abstract.

A modified form using an embedding method simplifies the
presentation of the streamlined diffusion finite element method of
Hughes and Brooks for the numerical solution of convection dominated
convection-~diffusion flow problems. The modification also makes it
more clear which types of boundary conditions to choose in connection
with a method of separating the layer part calculation of the solution.
We discuss also more classical methods, such as exponentially upwinded
Galerkin methods and a new defect-correction method.

1. Introduction.

The numerical solution of convection dominated convection-
diffusion problems is difficult because the solution has layers and a
standard Galerkin method may result in severely oscillating approximate
solutions, unless the finite element mesh is very fine. Furthermore,
even if the exact solution is smooth (i.e. has no layers) such methods
do not in general give optimal orders of accuracy in the discretization
parameter (h).

The nonphysical oscillations may be damped out by introducing an
artificial diffusion term in the discrete problem of O(h) (see for
instance [15]). Alternatively, one may use upwinded basisfunctions such
as in [17]. In the limit case, and for piecewise linear finite element
basisfunctions, this latter method approaches an upwinded difference
method. Besides the usual limitation in the order of accuracy,

classical artificial diffusion or upwind finite elements have the

* s
Department of Mathematics, University of Nijmegen, The Netherlands



O. AXELSSON

undesirable property of smearing sharp fronts in the directions
perpendicular to the streamlines. This is caused by the fact that the
artificial diffusion term acts in all coordinate directions. In some
problems, such as miscible displacements problems one encounters also
an undesirable grid-orientation effect: the approximate solution may
depend heavily on the orientation of the grid, see [81].

By use of an exponentially damped weightfunction used in the layer
elements only (see for instance [ 1]), one may damp oscillations caused
by a downstream layer (see below), but the oscillations due to
characteristic layers remain. Use of an exponentially damped
weightfunction all over the domain may cause numerical instabilities
when evaluating the exponential functions. See however the discussion
at the end of Section 3 about the use of such a method for the
approximate symmetrization of the given problem.

To be more specific we shall congider the numerical solution of

the convection-diffusion problem:
(1.1) Leu = -V (eVu) + v*Vu + qu = f in Q c nzn, u=aonl , u=0on

FDO c To, VYuen = 0 on FO \ FDO and boundary conditions on F+ to be

specified later. Here some concentration u {of a chemical, of heat, etc)

is driven by a velocity field v and

r = {x e 39; Zfé < 0}
FO = Fo'l U FO,Z = {x € 3Q; ven = o}
r, = {x € 3Q; !jé > 0}

are the inflow, the characteristic and outflow boundary parts,
respectively, of 32 (see figure 1 for an example). € is a diffusion
tensor the components of which are small for convection dominated
flows. For most of the discussion there is no limitation in assuming

that ¢ is a scalar parameter.
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Figure 1. Flow in a region Q.

In practice, the characteristic boundaries are often physical, like a
wall. We shall assume that the vector function v is [Cl(Q)]n, that

q e Cl(ﬁ) and that f € L2(Q). We also make the standard assumption that
q - %’Z'! P 9, 2 0 Vx € Q. In general q, = 0 but in some cases we shall
assume that 9, > 0. For part of the theoretical analysis we may
introduce a new coordinate system (s,t) where t is the parametric
representation of I‘_(t=y/yo in Fig. 1) and s = s(t) the parametric

representation of the vector field line beginning at t on T_. We let

dxéS,tL = vix(s,t)), 0 <s < s (t), x(0) = [ °1 (in Fig. 1).
S -_—— - ty0

The solution of the reduced equation Lou f (which is a scalar first

order hyperbolic equation) satisfies then

du(s,t)
ds

each t, an ordinary differential equation along the characteristic

+ qu(s,t) = £(s,t), 0 < s < s*(t), u(0,t) = a(O,tyO), i.e. for

lines. Clearly when ¢ is small, the solution of (1.1) is essentially
governed by the reduced solution and in general the boundary

conditions on PO u F+ are not satisfied. Hence there arises layers



0. AXELSSON

along FO u T+.

Along and close to PO 2 (similar considerations are valid for FO 1),
14 14
the differential equation is essentially governed by

L ~o- + + =
e'l.1 ~ SuYY Vlux qu £,

i.e. a parabolic equation. For this one finds a layer in the solution
of width 0(ve). At F+ there arises an exponential layer of width O(e)
if u is imposed there (i.e. if a Dirichlet condition is valid at F+),
otherwise, depending on the boundary condition, there arises a layer in
some derivative of u (but not in u itself).

In many problems one is mainly interested in the behaviour of the
layer along PO = F0,1 u PO,2 but not in the one at F+. In such cases we
may select a boundary condition at F+ for convenience of smoothness and
“ease of programming of the numerical method to be used, because the
exact boundary condition at P+ has negligible influence on the solution
in the interior of Q away from P+.

Oour aim is to calculate the solution of (1.1) numerically with error
estimates of high order and valid uniformly in e. Two difficulties
arise then. The first is associated with the lack of regularity of the
solution valid uniformly in €. Typically when there is a layer at F+,

the solution u = ue satisfies

3/2 1/2 .
2w ||, + Pl + Nullg s crll€ll g + lal 3 vhere ||+l | is

the Sobolev norm of s'th order and |-lr is the L2 norm on I'_. By
considering a one-dimensional problem it follows that this inequality

3/2

is sharp in the sence that l‘u€||2 diverges as e as € + 0. For
problems without an outflow layer a somewhat better regularity result
may be derived, see e.g. [4].

The second difficulty is due to the lack of coercivity valid

uniformly in €. If q - %-Z;!_Z 9 > 0 Vx € 2, we have only

[ (Leu)udQ 2 c[ellulli + llu[lg] and this is the cause of a degraded
1]
order of accuracy of the classical Galerkin method (see Section 3) for

small values of €.

To overcome the problem associated with the lack of regularity



CONVECTION DOMINATED CONVECTION-DIFFUSION PROBLEMS 7

due to the layers we split the solution in three terms, a smooth one
corresponding to Neuman boundary conditions or boundary conditions
defined by the reduced equation at FO U F+, a term in the form of a
smooth function multiplying an exponential layer function at F+ and a

term taking care of a possible layer along I'.. In calculating the last

0
term, we think of using a refined (graded) mesh along T  to resolve

this layer (see Fig. 1.). This is not unreasonable, in gs much the
width of the layer is 0(/e) there. The smooth term may be calculated
numerically by any of the methods discussed in Sections 3 and 4. This
method of splitting the solution does however not handle possible
interior layers. Methods of calculating the layers separately has been
considered for one-dimensional problems in [5] and [61].

In order to reduce the non-physical smearing of sharp fronts
(such as in an interior layer) in directions perpendicular to the
convective field force, Raithby proposed in [19] an upwinded finite
difference scheme which however was still only first order accurate
but having an artificial diffusion term acting only in the direction
of the streamlines. The idea was extended to finite elements by Hughes
and Brooks in [11], and was further developed by Hughes and Brooks in
a series of papers. The extra diffusion introduced by these so called
streamline diffusion methods may be compensated for by a proper use of
a Petrov-Galerkin formulation. The mathematical analysis of this method
was done by Johnson and Navert [13] for a problem with constant
coefficients. Navert extended the method in [18] to cover more general
stationary and time-dependent problems. In particular he proved
discretization error estimates valid in the interior of Q.

In the present paper, we consider only global error estimates and
valid uniformly with respect to €. In section 3 we discuss the
classical Galerkin method and in the last section we discuss a
modified form of the streamline diffusion method. The modification is
done by embedding the solution of the given problem in the solution
space of a modified problem of a higher order with an artificial
diffusion term acting along the streamlines. Then a classical Galerkin

method may be applied on the new equation. For this we prove readily
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almost optimal orders of convergence of the Hl- and L2—discretization
errors. The advantage of the modified form is that the analysis is

somewhat simplified and we see easily which boundary conditions to use
in order not to introduce extra layer effects, when we use the method

of splitting the layer parts from the solution.

2. Method of separating the layer parts of the solution.

We shall use a modification of a method by Levinson (see e.g.
[16]) to split off the layer parts of the solution. We shall assume
that V-v < 0, that ¢ is constant and that there exists a function g,
such that g = 0 on F+, ZQ-é_= —X;é_on I‘\I‘+ and that, at least
approximately, Yg = -v (see [1], p. 337, for a method to transform the
problem to a form where this is satisfied). For ease of exposition, we

assume in fact that this is satisfied exactly, i.e. v is a potential

vector field. Then Z?g = -Vev 2 0 in Q and because ZQ-é_S 0 on F+, it
follows that g > 0 in 2. Let at first u = uéo) + uél), where
1 1) -

L u( ) £, u(l) =gonTl, Vu( )'n =0on T

€ € € - =" - 0
and uél) satisfies the prescribed boundary conditions for u, at r+.
Assume in this section that these are alsc of Dirichlet type, i.e.
u<1) =B at ' . For u(o) we have then
€ + €

Lu'® 2 ,u(O) =0onlT uT, w'®. -0

€€ € - +! = =
onI' \T and u(o) =u_ - u(l) on I'. . Hence u(o) contains the layer
0] D0 € € € D0 €

along the characteristic lines and u(l) is free of such a layer. We
now separate the downstream layer from uél),
(2.1) o' u_ + ze /¢

where g is defined above and where ;E,z will be defined below. Then
~ - 2
2.2 LulV e L5+ 0 [-T(eT2) + (Vg Tz + (@7 g)2] -
2
- %-[szg + |vg|“1z} = £.

We shall let
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(2.3) Leue = f in Q , u_=aon I and Zpe'2_= 0 on FO (i.e. the

‘s (1)
boundary conditions at I' U FO as for u ). At F+ we may choose proper

boundary conditions in order to get a smooth solution Es without layers.

For simplicity, we take Vu 'n = 0. Since V2g Vv it follows from

(2.2) that z must satisfy V (-eVz) + (2Vg+v)+Vz + (q+V g)z = 0 or
(2.4) L%z = 9+ (-e¥2) - U+ (va) + qz =0 dn Q.

The boundary conditions are

1 ~
z = u( ) . u onl' ,z=0o0onT.
€ € + -

Further Zg'§_= 0 on I' | because

0
0 = V(u(l) -
—'e £

e

yen = (Vz-n - %-Zg-éje—g

and, by definition, v°n = 0 on T.

Hence z is the solution of the adjoint operator equation. For this the
flow goes in the opposite direction and an exponential layer may now
occur at ['_.

In the same way as above in (2.1), we may split off the layer part of

(1)
(1)e-g /€ (1)

~
z, i.e. z = 2 =2z + z , where g satisfies

Z?g(l) = Vev in Q, g(l) =0onT_ and Vg

(1)

(1)'§_= ven on I'\T_.

(1)

;e satisfies L:;e = 0 and z satisfies Lez = 0. The process may
be repeated until the corrections (the layer terms) are small enough.
Note that, because g > 0 in the interior of 2, the correction terms,
ze—g/e etc; are indeed small in the interior, when € is small. This
implies that we only have to calculate g numerically in the vicinity
of F+

In the above fashion, our problem (1.1) is reduced to solving
problems LEGE = f, L:;s = 0 etc., where the solution is smooth (has no

layers) .

0 .
Remark 2.1. Above we have assumed that a € Cc (F_). If o is
discontinuous at some point on F_, there arises an interior layer, of
the same type as the characteristic boundary layers. Interior layers

can't so easily be treated in the above way.



