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Preface

Most of the topics in applied mathematics dealt with in this handbook can be
grouped rather loosely under the term analysis. They involve results and techniques
which experience has shown to be of utility in a very broad variety of applications.

Although care has been taken to collect certain basic results in convenient form,
it is not the purpose of this handbook to duplicate the excellent collections of
tables and formulas available in the National Bureau of Standards Handbook of
Mathematical Functions (AMS Series 55, U.S. Government Printing Office) and in
the references given therein. Rather, the emphasis in the present handbook is on
technique, and we are indeed fortunate. that a number of eminent applied mathe-
maticians have been willing to share with us their interpretations and experiences.

To avoid the necessity of frequent and disruptive cross-referencing, it is expected
that the reader will make full use of the index. Moreover, each chapter has been
made ‘as self-sufficient as is feasible. This procedure has resulted in occasional
duplication, but as compensation for this the reader may appreciate the availability -
of different points of view concerning certain topics of current interest.

As editor, I would like to express my appreciation to the contributing authors; to
the reviewers, to the editonial staff of the publisher, and to the many secretaries
and typists who have worked on the manuscript: without the partnership of all of
these people, this handbook would not have been possible.

CARL E. PEARSON

Changes in the Second Edition:

Some material less directly concerned with technique has been omitted or consol-
idated. Two new chapters, on Integral Equations, and Mathematical Modelling,
have been added. Several other chapters have been revised or extended, and known

misprints have been corrected. ,
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Formulas from
Algebra, Trigonometry
and Analytic Geometry

H. Lennart Pearson*

1.1 THE REAL NUMBER SYSTEM

Readers wishing a logical development of the real number system are directed to
the references at the end of the chapter. Here the real numbers are considered to
be the set of all terminating and nonterminating decimals with addition, subtrac-
tion, multiplication and division (except by zero) defined as usual. Addition and
multiplication satisfy

the Commutative Law

atb=b+a (1.1-n
ab = ba (1.1:2)

the Associative Law
at(btc)y=(@+tb)+tc (1.1-3)
a(be) = (ab)c ‘(1.1-4)

the Distributive Law
a(b+¥c)=ab +ac (1.1-5)

The real numbers are an ordered set, i.e., given any two real numbers a and b, one
+

*Prof. H. Lennart Pearson, Dep’t. of Mathematics, lilinois Institute of Technology, Chicago, 1ll.
1
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of the following must hold:
a<b a=b a>b ‘ - (116

The real numbers fall into two classes, the rational numbers and the irrational
. numbers. A number is rational if it can be expressed as the quotient of two inte-
gers. Division of one integer by another to give a decimal shows that a rational
number is either a terminating or repeating decimal. Conversely, any repeating

decimal is a rational number, as indicated by the following example: :

4328328328 - - -

g, 328,328 308
100 108 10°
4324

T summing the eometnc series
999 by 4 B!

Also note for example 8 = 7.999999 - - -

Non-repeating decimals correspond to irrational numbers.

A set of numbers is said to be bounded above if there exists a number M such that

- every member of the set is <M. The smallest such M is called the least upper

bound of the given set. Similarly a set of numbers is bounded below if there,exists
a number Q such that every member of the set is = Q, and the greatest lower bound
is the largest such Q. Any non-empty set of numbers which is bounded above has a
least upper bound, and similasly, if it is bounded below it has a greatest lower
bound. :

1.2 THE COMPLEX NUMBER SYSTEM

1.2.1 Definition, Real and lmaginéry Parts

Two definitions will be given. First, any number of the forma + ib where 2 and b
are any real numbers and i* =-1 is called a complex number. The number a is
called the real part of the complex number and b is called the imaginary part. If
a +ib is denoted by the single letter z, then the notation a = R(z), b = I(z) is used.

A second definition, more modern in character, is to define the complex numbers
as the set of all ordered pairs (a, &) of real numbers satisfying

(a,b)+(c,dy=(@a+c,b+d) (1.2-1)
(a,b){(c.d) =(ac~ bd,ad + bc) (1.2-2)

In particular,

(a 0)+(c,0)=(@+¢c,0)
" @,0)(c,0) =(ac,0)
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so (g,0) may be identified with the real numbera. By (1.2-2),(0, 1)(0,1)=(-1,0)
and if i is used for the complex number (0, 1) then

a+ib =(a,0)+(0, 1) (b,0) =(a,0) +(0, b) = (a, b)
and the two definitidns are seen to be equivalent.
1.2.2 Conjugate, Division, Modulus and Argument

The conjugate z of the complex numberz =a +ibisz =a- ib.

L4

z2+2=2R(z) z-7=2l2) (1.2-3)

Aiso, ,
7 ¥z,=2, +2,

2123 =(21) (23) (1.2-4)

Division of one complex number by another is illustrated by example:

3+20 _(3+2)(4+3) _6+17i 6 17
4-3 (4-30)(4+3) 25 25 '35

The modulus, or absolute value, of the complex number z=a +ib is |z] =
v/a* + b? and the argument, or amplitude, of z is arc tan (b/a). Note that

_lail
1z,]

22 =121, lzy240 = lzslizal, E—' (1.2-5)

2

1.2.3 The Argand Diagram
A one-to-one correspondence exists between the complex numbers and the points

in a plane.
a + ib +—> point in 2-space with coordinates (a, b)

1.2.4 Polar Form, de Moivre's Formula“

Introducing polar coordinates in the plane, x =r cos 8,y =r sin 6 the complex num-
ber x + [y can be written in the polar form:

x+iy= rcos B +isin6) (1.2-6)

where r =+/x% + y7 is the modulus of z and 8 = arc tan (¥/x) is the argument of z.
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Fig. 1.2-1 Argand diagram: representation of complex numbers in the plane.
Multiplication and division of numbers in polar form yields

[ri(cos @, +isin@,)] [ra(cos 8, +isin6,)]

=nr [cos(0. +02)+isin(0, +02)] (12-7)

ri(cos8, +isinf,) r,

cos (8, - 0,) +isi - 2-8)
ra(cos B + i sin 82) r21005(1 2)+isin (8, - 6,)] (1.2-8)

and extending the multiplication to n equal factors gives de Moivre’s Formula:
[r(cos 8 +isin 8)]" = *(cos n@ + i sin nh) (1.2-9)

1.2.5 The n™ Roots of a Complex Number
Given z =r(cos 8 +isin 8),

6 + 2k 6 + 2k .
ZVn = ptin [cos( n2 ”)ﬂ'sin( : ﬂ)] k=0,1,2,3,...,n-1 (1.2-10)

which leads to a more general form of de Moivre’s Formula

2 = pmin [cos T(O + 2km) + i sin g(ﬂ + 2k1r)]
n

k=0,1,2,...,n~ 1;m and n having no factorsincdmmon, (1.2-11)




Formulas from Algebra, Trigonometry and Analytic Geometry 5

1.3 INEQUALITIES

1.3.1 Rules of Operation, the Triangle Inequality

For a, b and ¢ real numbers,

ifa<bandb<cthena<c

ifa<bthena+c<b+c

ifa<bthenac<bcifc>0

ifa <bthenac> becif ¢ <O0.

Also |a + b} < |a} + |b) which is the Triangle Inequality, where |al isa if 2 2 0 and
is-aifa<O.

1.3.2 The Inequalities of Holder, Cauchy-Schwarz and Minkowski

leta,,a;,...,a,.b1,b,,.... h,, be any real or complex numbers.
Holder’s Inequality ’

n n n A 4
| Z akbk ( z lakkaS(Z iIJk‘A) (Z ibk|&>
k=1 k=1 .

1/a

k=1 k=1

A
where A > land a = )\~—] (1.3-1)

Cauchy-Schwarz Inequality

n

Z akbk

k=1

2
<<Z laklz) (Z lhkiz) (1.3-2)
k=1 k=1

Minkowski Inequality

/A /A

1/ n
+(Z lbkl’\) where A= 1 (1.3-3)
k=1 )

A 1
(i la, +ka") <<.Z w*)
k=1

k=1

1.4 POWERS AND LOGARITHMS

1.4.1 Rules of Exponents

Let @ and b be any positive real numbers and let m and n be positive integers. Then
a" is defined to be the result obtained by multiplying a by itself » times. Then

atam =g"t"m (1.4-1)
(an)m =anm (l '4,2)
(ah)* =a"p" (1.4-3) .

a 121 (ln .
ay 4 1.4-4
(/)) " _ ( )
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A meaning for a° consistent with these rules is obtained by considering a"a° =
a"*® =g" 50 thata® = 1;thena™a” =a"*" =4% = | s02™" = 1/a".

an
m

=g"m : (1.4-5)

]

1.4.2 Radicals, Fractional Exponents

Any number a such that a” = b, where n is a positive integer, is called an n'? root of
b. Any number b has exactly n, n'™ roots (1.2.5). The principal root of a positive
number is defined to be the positive root and the principal n* root (n odd) of a
negative number is the negative root. Principal root is not defined when b is nega-
tive and n is even. The radical symbol </ is defined to be the principal n'™ root,
whenever that is defined, and to stand for any one of the » roots if there is.no prin-

cipal root.
E xample:
V& =2, J-32=-2, \9=%3i
a'/" is defined to be the same as/a

Example:

4V1=2, (-3 =<2, (-9)2 =23

Also
a™" = (Jay" =<fa™  m, n positive integers (1.4-6)

Finally the definition of %, « irrational, will be illustrated by example. Consider
2™, where 7 = 3.141592654 . ... -“Theh 27 is defined as the limit of the sequence
23 231 314 93141 53.1415 5314159 23141592 - each term of which is defined

by the above.

1.4.3 Definitions and Rules of Operation for Logarithms

For any positive number n and any positive number a except 1, there exists a
unique real number x such that n =a*. x is called the logarithm of n to the base a.
This is written either as above or as x =log, n. Logarithms have the following
properties and rules of operation: . '

log, 1=0 logga=1 a“8a"=p (1.4-7)
log, (m - n)=log, m+log, n (1.4-3_)




