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NOTATION

In the following definitions, the first number indicates the chapter in which the notation is
introduced, and the second number indicates the section within the chapter.

U(u)

u(f), u(f)

Uel(
R(s)

Uvieu,

U(l)’ U( )]

% (p € R(G))

m'p)
M (s)
Po

jU(s) du(s), where U is a continuous

unitary representation of a group G and
u is a bounded measure on G: 21.1

[£(5)Uls)dB(s), where B is a Haar

measure on G, and fe ZYG, p): 21.1
mapping u+—s U(u): 21.1

left regular representation [+ (g, «f)
21.1

direct sum of two continuous linear
representations: 21.1

real (resp. quaternionic) linear repre-
sentation corresponding to a complex
linear representation U: 21.1, Problem 9
minimal two-sided ideals of the complete
Hilbert algebra L%(G), for G compact:
212

identity element of a,: 212

the integer such that q,, is isomorphic to
M, (C): 212

elements of a,: 21.2

the matrix (n, 'm{®(s)): 21.2

index of the trivial ideal o, = C: 212

vii



viii NOTATION

Z(R), Z(R(G »n

By

%
Iy

W(G, T), W(G), W

w.i
S(G, T), S(G). S

ae$

ng u,: 213
the index such that y; = 7;: 21.3

class ), d,-p of a finite-dimensional
peR

linear representation: 21.4

ring of classes of continuous linear rep-
sentations of G: 2I'4

bilinear form (u, v) Tr(U ,(u) o U (v))
associated with a linear representation U
of a Lie group: 2L.5

bilinear form (u, v)— Tr(p(u)  p(v)) as-
sociated with a homomorphism of Lie
algebras p: g— gl(F): 215 .

Killing form (u, v)— Tr(ad(u) - ad(v))
of a Lie algebra a: 21.5

kernel expy *(e) of the exponential expy:
t » T, where t is the Lic algebra of the
torus T: 21.7

dual of the lattice 'y, in t*: 21.7

Weyl group A4 (T)/T, where T is a maxi-
mal torus of G: 21.7

tw~1(A), for we W and 1€ t*: 21.8

set of roots of G with respect to T: 21.8
subspace of g, consisting of the vectors
x such that [u, x] = a(u)x for all uet:
21.8 .

subgroup x; (1) of T, where x(exp(u)) =
@™ for uet: 21.8

hyperplane o~ *(0) in t: 21.8

element of W acting on t by reflection in
the hyperplane u,: 21.8

_simple U(sl(2, C))-module of dimension

m+ 1:219

root decomposition of a complex semi-
simple Lie algebra g: 21.10 and 2120
element of b such that a(h) = ®(h, h3):
21.10

element of b such that a(h,) =2 and
h, € [g,, 8-4): 21.10

elements of g,, 3., respectively, such
that [x,, x_,] = h,: 21.10




Sp(2n, C), sp(2n, C)
SO(m, C), so(m, T)

An’ Bn’ Cn’ Drz
P(G, T), P(G), P

eP, St ep(S)

NOTATION ix

bijection A+ 4 — A(h,)a of h* onto itself:
21.10

Lie subalgebra Ch,® Cx,® Cx_,:
21.10

numbers such that [x,, x5] = Ny g%, p
when o + B S:21.10

union of the hyperplanes in t with
equations o(u) =2min, neZ: 21.10,
Problem 2

bijection A1 — v (A)r, for a reduced
root system S in F: 21.11

Weyl group of 8, generated by the o,;
21.11

Cartan integers vg(a) = 2(8|a)/(8|B) for
2, fe8: 2111

set of « € § such that «(x) > 0: 21.11
basis of S, namely the set of indecom-
posable elements of S : 21.11

set of positive roots, relative to a basis
Bof §: 21.11

root system formed by the v, € F*: 21.11
basis of 8" consisting of the v,, « € B:
21.11

1 Y ir2111
AqS+

linear form on t= @ RIiE < M,(C)
s=1

such that ¢ (iE,) = id,,: 21.12

complex symplectic group and its Lie

algebra: 21.12

complex special orthogonal group and its

Lie algebra: 21.12

Lie algebras of the classical groups: 21.12

lattice 27il'} of weights of G with respect

to T: 21.13

character exp(u)— e”* of T, where p € P:

21.13

Y. e, where IT is an orbit of the Weyl
pell

group W in P: 21.13
set of W-invariant elementsof Z[P]: 21.13




x NOTATION

P(g)

C(g). C

Hl
Z[P]aw
J(e?)

P

reg

S(p)

A
T

reg
UG Ut Ugr

Mg, My, Mgt

n=np, + o+ B

w

a
Uy, k

{p1 P2 Pi}
Q(a)

o;

Spin (m)

hy,, where{f,,..., B} is a basis of S: 21.14
set of A € i, such that i(h,) e Z for all
a€ 8§, or equlvalently such that A(h;) e Z
for1<j<l:21.14

Weyl chamber in it*, consisting of the A
such that A(h;) > 0 for 1 <j < I: 21.14
order relation on it“, equivalent to

A=porpu—A=y+ Zcﬂ,,wnhyezc*

and ¢; > 0 and not all zcro 21.14
reflection s, A2 —A(h)B; for
1<j<:21. 14

hyperplane in it* with equation
A(h,) = 0:21.14

set of W-anti-invariant elements of Z[P]:
21.14

Yy det(w)e™ *, where p € P: 21.14

weWwW
set of weights 1€ P which are regular
linear forms: 21.14
S(I1), where II is the W-orbit of
pePnC:2114
J@)= [ (&> — e %?):21.14

eS8t
set of regular points of the maximal torus
T<G:21.15
invariant volume-forms on G, T and
G/T: 21.15
invariant measures corresponding to the
volume-forms vg, vy, ogr: 21.15
highest root in 8, relative to the basis
B ={B,, ..., B}: 21.15, Problem 10
affine Wey! group: 21.15, Problem 11
hyperplane with equation «(u) = 2k in
it: 215, Problem 11
basis of it dual to {8, B,, ..., B}:
21.15, Problem 11 '
sublattice P(G/Z) of P(G) generated by
the roots x € S: 21.16
fundamental weights (1 <j < /) relative
to the basis B of S: 21.16
simply connected covering group of
SO(m) (m > 3): 21.16
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NOTATION xi

set of self-adjoint automorphisms of E:
21.17

set of positive self-adjoint automor-
phisms of E: 21.17

G, a simply connected compact semi-
simple Lie group; g, = Lie(G,);
g = (8.)o; ¢« the conjugation of g for
which g, is the set of fixed vectors:
21.18

simply connected complex Lie group
with Lie algebra g: 21.18

conjugation of g which commutes with
¢, 21.18

real vector subspaces of g, on which
co(x) = x and ¢y(x) = — x, respectively:
21.18

subalgebra of invariants of c,: 21.18
image of ig, under the mapping
iur>expgliu): 21.18

G, the Lie subgroup of Gy consisting
of the fixed points of o such that
Oy = Co; Ko =Go n G,; P0=Gonl3':
21.18

Go/D, a group locally isomorphic to Gy:
21.18

K, =Ky/D; P, =image of p, under
expg,: 21.18

G./(C N Gy), C the centre of G,: 21.18
Ko/(C n Gy): 21.18

subgroup of fixed points of ,, the auto-
morphism of G, obtained from ¢ on
passing to the quotient: 21.18

image of ip, under expg,: 21.18
lexicographic ordering: 21.20

maximal commutative subalgebra of po:
21.21

maximal commutative subalgebra of g,
containing a,: 21.21

subset of § consisting of the roots which
vanish on iay: 21.21
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subset of 8" = § — § consisting of the

a such that a(z,) > 0: 21.21
n= @ g, n=140n gy: 21.21

ae 8§t

Lie algebra of matrices (x,;) such that

xy;=0for j+ k> h: 21.21
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CHAPTER XXI
COMPACT LIE GROUPS AND SEMISIMPLE LIE GROUPS

It is rarely the case in mathematics that one can describe explicitly all the
objects endowed with a structure that is characterized by a few simple
axioms. A classical (and elementary) example is that of finite commutative
groups (A.26.4). By contrast, in spite of more than a century of effort and an
enormous accumulation of resuits, mathematics is still very far from being
able to describe all noncommutative finite groups, even when supplementary
restrictions (such as simplicity or nilpotency) are imposed.

It is therefore all the more remarkable that, in the theory of Lie groups,
all the compact simply connected Lie groups are explicitly known, and that,
starting from these groups, the structure of compact connected Lie groups is
reduced to a simple problem in the theory of finitely generated commutative
groups ((16.30.2) and (21.6.9)). The compact simply connected Lie groups
are finite products of groups that are either the universal covering groups of
the “classical groups” SO(n), SU(n), and U(n, H) (16.11) (and therefore
depend on an integral parameter) or the five “exceptional” groups, of
dimensions 14, 52, 78, 133, and 248. We shall not get as far as this final resulit,
but we shall develop the methods leading to it, up to the point where what
remains to be done is an enumeration (by successive exclusion) of certain
algebraic objects related to Euclidean geometry, subjected to very restrictive
conditions of an arithmetic nature, which allow only a small number
of possibilities (21.10.3) (see [79] or [85] for a complete account).

These methods are based in part on the elementary theory of Lie groups
in Chapter XIX, and in part on a fundamental new idea, which dominates
this chapter and the next, and whose importance in present-day mathema-
tics cannot be overemphasized; the notion of a linear representation of a
group. The first essential fact is that where compact groups are concerned

" (whether they are Lie groups or not) we may restrict our attention to finite-
‘dimensional linear representations (21.2.3). The second unexpected

1



2 XXI COMPACT LIE GROUPS AND. SEMISIMPLE LIE GROUPS

phenomenon is that where compact connected Lie groups are concemed
everything rests on the explicit knowledge of the representations of only two
types of groups: the tori T" and the group SU(2) (21.9). Roughly speaking,
these are the “ building blocks ” with which we can “construct ” all the other
compact connected Lie groups and obtain net only their explicit structure
but also an enumeration of all their linear representations (21.15.5).

The interest attached to the compact connected Lie groups arises not
only from the esthetic attractions of the theory, which is one of the most
beautiful and most satisfying in the whole of mathematics, but also from the
central position they occupy in the welter of modern theories. In the first
place, they are closely related to a capital notion in the theory of Lie groups,
namely that of a semisimple group (compact or not), and in fact it turns out
that a knowledge of the compact semisimple groups determines all the
others (21.18). Since the time of F. Klein it has been recognized that classical
“geometry” is essentially the study of certain semisimple groups; and E.
Cartan, in his development of the notions of fiber bundle and connection,
showed that these groups play an equally important role in differential
geometry (see Chapter XX). From then on, their influence has spread into
differential topology and homological algebra. We shall see in Chapter XX1I
how—again following E. Cartan—it has been realized over the last twenty-
five years that the study of representations of semisimple groups (but now on
infinite-dimensional spaces) is fundamental in many questions of analysis,
not to speak of applications to quantum mechanics. But the most unex-
pected turn has been the invasion of the theory of semisimple groups into
regions that appear completely foreign: “abstract” algebraic geometry,
number theory, and the theory of finite groups. It has been known since the
work of S. Lie and E. Cartan that semisimple groups are algebraic (that is,
they can be defined by polynomial equations); but it is only since 1950 that it
has come to be realized that this is no accidental fact, but rather that the
theory of semisimple groups has two faces of equal importance: the analytic
aspect, which gave birth to the theory, and the purely algebraic aspect, which
appears when one considers a ground field other than R or C. We have not,
unfortunately, been able to take account of this second aspect; here we can
only remark that its repercussions are increasingly numerous, and refer the
reader to the works [80], [81], [74], [77], and [78] in the bibliography.

1. CONTINUOUS UNITARY REPRESENTATIONS OF
LOCALLY COMPACT GROUPS

(21.1.1) Let G be a topological group, E a Hausdorff topological vector
space over the field C of complex numbérs. Generalizing the definition given
in (16.9.7), we define a continuous linear representation of G on E to be a
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mapping s U(s) of G into the group GL(E) of automorphisms of the
topological vector space E, which satisfies the following conditions:

(@) U(st) = U(s)U(t) for all s, t € G;
(b) for each x € E, the mapping s+ U(s) - x of G into E is continuous.

It follows from (a) that U(e) = 1 (where e is the identity element of G)
and that, for all s € G,

(21.1.1.1) U(s™') = U(s)!

If E is of finite dimension d, the representation U is said to be of dimen-
sion (or degree) d, and we sometimes write d = dim U.

The mapping U, that sends each s € G to the identity automorphism 1g
is a continuous linear representation of G on E, called the trivial
representation.

A vector subspace F of E is said to be stable under a continuous linear
representation U of G on E if U(s)(F) c F for all s € G; in that case, the
mapping s+ U(s) | F is a continuous linear representation of G on F, called
the subrepresentation of U corresponding to F.

A continuous linear representation U of G on E is said to be irreducible
(or topologically irreducible) if the only closed vector subspaces F of E that
are stable under U are {0} and E. For each x# 0 in. E, the set
{U(s) - x : s € G} is then total in E (12.13).

(21.1.2) In this chapter and the next, we shall be concerned especially with
the case where E is a separable Hilbert space. A continuous unitary represen-
tation of G on E is then a continuous linear representation U of G on E such
that for each s € G the operator U(s) is unitary, or in other words (15.5) is an
automorphism of the Hilbert space structure of E. This means that the
operators U(s) satisfy conditions (a) and (b) of (21.1.1), together with the
following condition: '

(¢) (Uls) x|U(s)-y)=(x|y)forallse Gandall x, y e E.

In particular, U(s) is an isometry of E onto E, for all s € G, and we have
(21.1.2.9) Us)™! = (U(s))*
for all s e G.

(21.1.3) (x) When E is ﬁmte-dlmensxonal condition (b) of (21.1.1) is equiv-
alent to saying that s-— U(s) is a continuous mapping of G into the normed
algebra £(E) (relative to any norm that defines the topology of E); for it is
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equivalent to saying that if (u;(s)} is the matrix of U(s) relative to some basis
of E, then the functions u;, are continuous on G. On the other hand, fEisa
separable Hilbert space of infinite dimension and U is a continuous unitary
representation of G on E, then U is not in general a continuous mapping of
G into the normed algebra ¥(E) (Problem 3).

(i) When E is finite-dimensional, a continuous linear representation U
of G on E is not necessarily a continuous unitary representation relative to
any scalar product (6.2) on E. For example, if G = R, the continuous linecar

representation
[0
U:x— ( )
x 1

of G on C? is not unitary, relative i any scalar procuct on C?, because any
unitary matrix is similar to a diagc el matrix (15.14.14) (cf. Section 21.18,
Problem 1).

(21.1.4)  Throughout the rest of this chapter we shall consider only separable
metrizable locally compact groups, and as in Chapter X1V the phrases * locally
compact group™ and ** compact group” will mean ** separable metrizable locally
compact group” and “metrizable com act grovp,” ios

puctively.

Let G be a locally compact group. u a bounded complex mea<iire {13.20)
on G, and U a continuous unitarv representation o 3 on 2 s--arahle
Hilbert space E. For each pair . f vectois x. v . F. if- “Hon
s (U(s) - x|y) is continuous and bounded on 3. Lecause | Ulss - x| =
Ix|; it is therefore p-integrable, and by (13.20.5) we have

Y

(Um‘xMVngﬁﬂ@

[

(21.1.4.1)

' i

o

Since E may be identified with its <ual, if follows th =t thore exists 2 saigue
vector U(u) - x in E such that

for all y € E, and this allows us to vrite (13,10 &)

(21.1.4.2) Umyx:g(gm-@dmg

It is clear that this relation defines a continuous endomorphism L'(y1} of E,
since (21.1.4.1) implies that

(21.1.4.3) 1Oty s
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In particular, we have
(21.1.4.4) Ule,) = U(s)

for all s G.
The relation (21.1.4.2) is sometimes written in the abridged form

[PXl .1.4.5)7 Uu) = J U(s) du(s).

(21.1.5) We recall (15.4.9) that the set M{(G) of bounded complex mea-
sures on G is an involutory Banach algebra over C, the multiplication being
convolution of measures, and the involution ur ji. When a left Haar mea-
sure f§ has been chosen on G, the normed space L¢(G) may be canonically
identified with a closed vector subspace of M4(G), by identifying the class f
of a f-integrable function f with the bounded measure f - 8, since || /- ] =
N, (f) (13.20.3). By the definition of the convolution of two functions in
ZL(G) (14.10.1), LL(G) is a subalgebra of M¢(G) if we define the product of
the classes of two functions f, g € £L(G) to be the class of f * g.If in addition
G is unimodular (14.3), LYG) is a two-sided ideal in M{G), and the
transform of the measure f-p under the involution ur> g is f- B
(14.3.4.2). We may therefore consider L¢(G)as an involutory closed subalgebra
of MYG), the involution being that which transforms the class of f into
the class of f

We deduce from this that if G is unimodular, then for each representation
(15.5) V of the involutory Banach algebra L¢(G) on a Hilbert space E, we
have

(21.1.5.1) V(D £ Ny(f)

for all fe LLG). For if G is discrete, this is just (15.5.7) because the identity
element ¢, of ML(G) then belongs to L{(G). If G is not discrete, it is im-
mediately seen that V may be extended to a representation on E of the
involutory Banach subalgebra A = LY{G)@® Ce, of M{(G) by putting
V(f- B+ 4e)=V(f)+ 4" lg, and (15.5.7) can then be applied to this
algebra with identity element.

{(21.1.6) Under the assumptions of (21.1.4), the mapping p— U(u) is a rep-
resentation (15.5) of the involutory Banach algebra M{G) on the Hilbert
space E. If in addition G is unimodular, the restriction of p— U(u) to L¢(G) is
nondegenerate.

It follows immediately from (21.1.4.4) that U(e.) = 1. To prove the first
assertion, it remains to show that U(u = v) = U(p)U(v) and U (1) = (U(u))*,
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where y, v are any two bounded measures on G. If x, y are any two vectors in
E then by definition (14.5) we have

(U ) x]y) = f (UGs) - x1y) di = v)(s)

»

- j (Uw) - x13) dite) dv(w)

- | e xiwey 5 o) v

= | (UO) - x[(U@))* - y) du(v)

o

~

= | W) (UE) - x)]y) dufv)

]

(UEUE) - x[y)

by virtue of the Lebesgue-Fubini theorem, and this proves the first relation.
Next, using the fact that the operators U(s) are unitary, we have

((U@)* - x]y) = (Uw) - y|x)

relation.

o

o

r

o

n

r»

o

(Us) - y]x) du(s)
(Us) - y[x) dps)
(U(s™") - x|y) di(s)

(U() - x|y) dife)

(U@) - x|y)

by the definition of the measure j (15.4.9), and this proves the second

In particular, for each s € G and each bounded measure 1 on G, we have

(21.1.6.1)  U(e, * p) = U(s)U(),

Up = &) = U(u)U(s).

Let (V,) be a decreasing sequence of neighborhoods of e in G, forming a
fundamental system of neighborhoods of e. For each s € G and each n,letu,



