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Preface

During the past decade there has been a remarkable growth of interest in prob-
lems associated with systems of linear and nonlinear ordinary differential
equations with split boundary conditions. Throughout engineering and applied
science, we are confronted with nonlinear two-point boundary value problems
that cannot be solved by analytical methods. With this interest in finding
solutions to particular nonlinear boundary value problems has come an in-
creasing need for techniques capable of rendering relevant profiles. Although
considerable progress has been made in developing new and powerful proce-
dures, notably in the fields of fluid and celestial mechanics, and chemical and
control engineering, much remains to be done. It is apparent that although
physical models of boundary value type are evident in many branches of modern
engineering and applied science, the application of methods has remained
largely within the sphere of chemical engineering. On the other hand, in this
text we do not overlook the importance of physical systems that lie outside the
realm of chemical engineering: for example, orbital mechanics, theory of elas-
ticity, and mathematical biology.

This book is concerned with the development, analysis, and practical appli-
cation of various numerical techniques that can be adapted successfully for
the solution of nonlinear boundary value problems. One cannot expect a parti-
cular technique to be superior to others for all problems. We have tried to
present an account of what has been accomplished in the field. Accordingly, it
seemed appropriate to shape this text to those interested in numerical analysis
as a working tool for physicists and engineers. Qur emphasis is on description
and straightforward application of numerical techniques without presenting in

iX



X Preface

detail the underlying theory. The theory selected reflects our own interest and
experience with the application of diverse numerical algorithms. We believe
that the techniques described in this book will provide investigators with tools
that will permit them to solve difficult problems in modern engineering, applied
science, and other fields.

It is assumed that readers are acquainted with numerical analysis to the
extent that it is taught in the usual engineering courses. They also must have
some experience with applied analysis and programming.

Many people encouraged us in the writing of this text. We gratefully
acknowledge the assistance of N. R. Amundson, R. Aris, H. Hofmann, M.
Holodniok, M. Marek, M. G. Slinko, and J. Villadsen.

MiLaN KUBICEK

Prague, Czechoslovakia

ViaDIMIR HLAVACEK
Buffalo, New York
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Occurrence and Solution

of Nonlinear Boundary
Value Problems n

Engineering and Physics

1.1 Occurrence of Nonlinear Problems
for Ordinary Differential Equations

There are a large number of problems in engineering and physics that can be
described through the use of nonlinear ordinary differential equations. When
the (boundary) conditions, which together with the differential equations describe
the behavior of a particular physical system, are determined at various points,
the resulting problem is referred to as a boundary value problem.

The boundary conditions may be classified according to various criteria:
(1) linear-nonlinear boundary conditions, (2) separated conditions—mixed
conditions, (3) two-point-mulitipoint problems, and so on.

A great number of nonlinear boundary value problems are represented by
equations of diffusional type. Here the boundary conditions result after specifi-
cation of dependent variables (or fluxes) at the boundary of the system. These
conditions are usually of the separated type; that is, at a given value of the
independent variable, the values of the dependent variables, derivatives, or
a combination of both are prescribed. The boundary conditions for diffusion
problems may be of nonlinear type, especially for radiation problems. If there
is an external relation between boundary conditions (e.g., recycle problems in
chemical engineering), the boundary conditions are of the mixed type; that
is, for a given value of the independent variable, a combination of dependent
variables (or derivatives) with different arguments results. Sometimes the
boundary conditions may be given in integral form; for example, if the total
amount of heat transferred is specified.



2 Chap. 1 Occurrence and Solution of Nonlinear Boundary Value Problems

In problems of mechanics, multipoint boundary value problems occur; for
example, for a multibody system, the velocity at different points may be
specified.

A number of nonlinear boundary value problems result after the formula-
tion of a model for a particular physical situation. Examples include diffusion
occurring in the presence of an exothermic chemical reaction [1], heat conduction
associated with radiation effects [2], deformation of shells [3], and so ont. For
these examples, the nonlinear equations represent the true physical situation.
However, there are a number of nonlinear boundary value problems which
result after certain mathematical transformations. To illustrate this family of
equations, boundary layer problems will be presented [4]. Although the flow of
a viscous fluid is described by rather complicated nonlinear partial differential
equations (Navier-Stokes equations), certain transformations make it possible
to convert them to nonlinear ordinary differential equations (boundary value
problems). The new dependent variables include some dependent and indepen-
dent variables occurring in the original problem. Whereas solution of the
original Navier-Stokes equations represents a difficult numerical problem, the
transformed equations (i.e., the boundary layer equations) are more conducive
to numerical treatment. Similar transformations may be used to convert the
nonlinear parabolic equations to a nonlinear boundary value problem. Some-
times this transformation is referred to in the literature as the Boltzmann trans-
formation [5]. Finally, the nonlinear boundary value problem for ordinary
differential equations results after proper discretization of nonlinear elliptic
partial differential equations with two independent variables [6, 7]. A specific
group of problems is created by the family of optimization problems which are
required to establish the “optimum profiles.” The equations formulated by use
of the Euler-Jacobi variational equations, as well as by the Pontrjagin’s maxi-
mum principle, belong to this family [8).

1.2 Existence of a Solution

Generally speaking, for a nonlinear boundary value problem it is difficult to
prove rigorously the existence of a solution. However, engineers and physicists
are more interested in finding in a numerical way a region of parameters where
the given nonlinear boundary value problem does not exhibit a solution.
Fortunately, for a great number of correctly formulated nonlinear boundary
value problems there exists at least one solution. Nevertheless, there are physical
problems which for particular values of governing parameters do not possess
a solution. For instance, the diffusion equation incorporating a strongly ex-
othermic reaction of zero order need not always exhibit a solution [1]. Another
example is represented by the boundary layer equations describing spiral flow
in a porous pipe [9].

tBracketed arabic numbers throughout refer to references at chapter end.



1.3 Problems of a Multiplicity of Solutions

There are a number of nonlinear boundary value problems that may exhibit
more than one solution. It is a difficult mathematical problem to investigate the
domain in which multiple solutions may occur. From the physical point of
view, a strong exothermic or autocatalytic reaction, radiation effect, or other
feedback mechanism is responsible for multiple steady states of a particular phys-
ical model. Table 1-1 surveys some physical models represented by nonlinear
boundary value problems for ordinary differential equations that may exhibit
multiple solutions.

1.4 Nonlinear Phenomena

Nonlinearities occurring in boundary value problems are caused by a number
of different physical effects. In chemical engineering problems, the following
nonlinear phenomena are frequently encountered:

1. Chemical reactions

2. Adsorption phenomena

3. Volume change resulting from the mole change accompanying a
chemical reaction

4. Radiation effects and problems connected with nonlinear heat transfer

5. Dependence of the rate, equilibrium, and transport coefficients on
concentration and temperature

6. Dissipation of energy

7. Flow of non-Newtonian fluids

8. Gravitation and Coulomb forces

Nonlinearities caused by a chemical reaction may be divided into two major
groups: (1) concentration dependences and (2) temperature dependences. The
first- and zero-order reaction-rate expressions are the linear relations that occur
in transport equations; all other reaction-rate expressions are of the nonlinear
type. For instance, an esterification reaction occurring in a liquid phase is
represented by a second-order reversible reaction (i.e., the nonlinearity is of
quadratic type). For catalytic reactions the reaction-rate expression is of the
Langmuir-Hinshelwood type [17] (rational function) or of integer power form.
In the realm of bioengineering the reaction-rate expressions for an enzymatic
reaction, which are formally equivalent to the Langmuir-Hinshelwood expres-
sions, are referred to as Michaelis-Menten kinetics [18]. The temperature
dependences are always nonlinear; for example, the reaction-rate or adsorption
constants are exponentials:

_ E
k=k,exp (iﬁ>

Here minus is for the reaction-rate expression, while plus must be used for



TaBLE 1-1

NONLINEAR BOUNDARY VALUE PROBLEMS HAVING MULTIPLE SOLUTIONS

Problem Equations Number of Solutions
Diffusion and Yy’ = —der 0 =4dp <d<d*: two
exothermic zero-~ Y0 =0, y(1)=0 solutions

order reaction in a
slab (1]

Diffusion and
exothermic first-
order reaction in a
slab {10}

Diffusion and
exothermic first-
order reaction in a
sphere [11, 12]

Diffusion, convection,
and isothermic
reaction with an
adsorption Kinetic
term [13]

Diffusion, convection,
and exothermic
reaction occurring
in a tubular reactor
{14]

Equilibrium of
suspended charged
drops (15]

Flow between two
rotating disks [16]

v B0 — )
Y7 =¢2yexp [1 T pa —-y)]
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d > &*: no solution

?ﬂ>;’?_L‘v ¢1<¢

<< ¢2: three solutions
Outside this region: one
solution
Up to 15 solutions have
been established

For certain values of the
governing parameters,
three solutions exist for

.Da; < Da < Da,

Qutside this region: one
solution

Up to five solutions have
been established

For B < 0.42: one
solution

For 0.42 < £ < 0.78: two
or three solutions

For greater values of Re,
more than ten solutions
have been found




Sec. 1.4 Nonlinear Phenomena 5

adsorption effects [17]. Of course, this exponential dependence is the main
source of numerical difficulties accompanying the particular physical problem.

Another source of nonlincarities are the adsorption processes since the
majority of adsorption isotherms are represented by rational functions. Evi-
dently, as a result, diffusion problems in which adsorption phenomena must
be considered represent a nonlinear boundary value problem. One should notice
that the expression describing the rate of growth of microorganisms (Monod
expression) is formally identical to the Langmuir adsorption isotherm [18].

A chemical reaction may be accompanied by expansion or contraction
phenomena. For instance, diffusion, convection, and second-order reactions
are described by a simple differential equation,

dy _ ;d*y 2
Fral

while for the volume-change case the equation is more complicated

dy 1 d2y E dy

&~ Lrrar=p e rrmr=pr (@) |4
Here L and E are the parameters describing dispersion and volume change,
respectively [19]. We may note that both reaction and adsorption give rise to a
nonlinear “source term,” while the volume-change effect results in nonlinear
derivatives or nonlinear coefficients.

Among the most complicated nonlinear problems are those connected with

radiation. The heat flux caused by radiation may be written

q=o(T* T}

This relation can be incorporated into transport equations in different ways. For
instance, for tube radiation through a jacket, the nonlinear radiation term is a
part of the differential equation [20], while for radiation by means of the inlet or
outlet surface of the tube, the radiation effect is a part of the boundary condi-
tions. There are very complicated physical situations in which the radiation
effect is accompanied by a chemical reaction or by a velocity distribution
(radiation boundary layer) [21]. For some extreme situations Newton’s law for
convective transfer does not describe properly the typical features of the process:
for instance, convective heat transfer to boiling helium is described by a cubic
law [22]:
qg=o(T — T,)

If the concentration or temperature dependences of rate, equilibrium, or
transport coefficients are considered in the physical model, nonlinearities in
derivatives and coefficients result (see, e.g., [23]). For small variations of concen-
tration or temperature for a particular physical process, average values of
coefficients may be used; however, for problems with extreme variations of the
order of 1000°C (e.g., supersonic flow of real gases around blunt objects), the
temperature dependences of coefficients must be considered [24]. The average
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values of coefficients cannot be used if jump variations can be expected; for
example, as a result of higher temperatures, recrystallization may occur, which
can cause an essential change in thermal conductivity. However, the most
practical problem is the temperature and concentration dependence of viscosity
[25].

Fluids in which the vector of the shear stress T and the gradient of velocity
dy/dx is not linearly proportional are usually referred to as non-Newtonian
fluids. A number of semiempirical nonlinear relations used in the literature are
presented in Table 1-2 {26, 27]. Problems that are linear for Newtonian fluids
may be strongly nonlinear for non-Newtonian fluids.

If energy dissipation is considered in hydrodynamic problems, then in
Fourier-Kirchhoff convective heat-transfer equations, a new term occurs which
is proportional to the second power of the gradient of velocity. Of course, this
term must be considered for those problems in which extreme gradients result,
which, however, can also be the case for relatively slow flow conditions.

Finally, the gravitational or Coulomb forces should be mentioned.

TABLE 1-2
SOME SEMIEMPIRICAL RELATIONS BETWEEN VECTOR
OF SHEAR STRESS 7 AND GRADIENT OF VELOCITY

T Model
—m ‘ de l“"‘ & Ostwald-de Waele
A arcsinh (—%— g::) Eyring
—(po t @iir[e-1)! 3-; Ellis
a[l — exp (—a ‘%)] Taganov

1.6 Types of Nonlinear Boundary Value
Problems in Chemical Engineering

1. Calculation of chemical engineering equipment
(a) Calculation of temperature profiles in countercurrent heat ex-
changers if the heat-transfer coefficients are dependent on tem-
perature.
(b) Calculation of concentration and temperature profiles in counter-
currently operated packed mass exchangers (rectification columns,
absorbers) [28].
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(¢) Calculation of concentration profiles in extraction columns [29].

(d) Calculation of concentration and temperature profiles in tubular
reactors with countercurrent cooling.

(e) Calculation of concentration and temperature profiles in tubular
recycle reactors [30].

(f) Calculation of concentration and temperature profiles in tubular
reactors if the inlet concentration and the amount of heat trans-
ferred are specified.

(g) Calculation of concentration and temperature profiles for a tubular
reactor with an external heat exchanger [31].

(h) Calculation of concentration and temperature for a tubular reactor
with an internal heat exchanger [31].

(i) Calculation of concentration and temperature profiles for complex
configuration “reactor-heat exchangers”: for instance, various types
of ammonia reactors (TVA, Casal, Quench, NEC, Fauser-Monte-
catini, OSAG, Haldor-Topsoe, etc.) [32].

(j) Design of catalytic convertors with a short bed [33].

2. Chemical reaction engineering problems

(a) Mass transfer and effectiveness factor evaluation for an isothermal
catalytic reaction occurring on a single pellet having nonlinear
kinetics [34).

(b) Heat and mass transfer and effectiveness factor evaluation for a
nonisothermal catalytic reaction occurring on a single porous pellet
[10, 11].

(c) Calculation of the characteristics of a laminar flame [35].

(d) Calculation of the critical dimensions of an explosive sample [1].

(e) Absorption and chemical reactions with nonlinear kinetics (or
nonisothermal) occurring in a liquid film [36].

(f) Heat transfer in a nonporous catalytic particle.

(g) Transport phenomena and substrate consumption in a microbial
film [37].

(h) Calculation of optimum temperature and pressure profiles in tubu-
lar reactors [38].

(i) Calculation of optimum “catalyst profiles” in tubular reactors [38].

(j) Calculation of boundary layer problems with a chemical reaction
[39].

3. Problems of heat and mass transfer

(a) Heat and mass transfer in a plate, cylinder, and sphere if thermal
conductivity is dependent on temperature [40] and diffusivity is
dependent on concentration [41].

(b) Radiation problems (e.g., radiation of a sphere or a fin) [20].

(¢) Solution of combined conduction-radiation problems in an opti-
cally thick medium [42).

(d) Heat and mass transfer in boundary layer problems (natural
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convection from a vertical wall {43], transpiration cooling [44],
massive blowing [45], radiation in the boundary layer at subsonic
and supersonic velocities [46], thermal boundary layer on rotating
bodies [4], heat transfer in a compressible boundary layer 4], etc.).

1.6 Types of Nonlinear Boundary Value
Problems in Physics

1. Problems of hydrodynamics and hydrostatics

(a) Flow of non-Newtonian fluids on a vertical plate (or Newtonian
fluids with variable properties).

(b) Calculation of the shape of velocity profiles in a non-Newtonian
fluid flowing between two rotating cylinders.

(c) Calculation of boundary layer problems for both Newtonian and
non-Newtonian fluids (flow on a flat plate [4], flow on a plate with
surface curvature [47], flow through a diverging channel [4], flow
caused by rotating disks [4], multidimensional flow [44], flow
through a porous structure [9, 48], flow of a compressible fluid [4],
problems of a supersonic boundary layer [4], problems of a non-
steady-state boundary layer [49]), magnetohydrodynamic hyper-
sonic flow [50].

(d) Effect of fluid motion on a free surface shape [51].

2. Problems of electrodynamics and electrostatics

(a) Equilibrium of suspended electrically charged drops [15].

(b) Breakdown of dielectrics [52].

(c) Ionic boundary layers [53].

(d) Problems of calculation of photoionization chambers [54].

(¢) Calculation of semiconductor-device current characteristics [55, 56].

3. Problems of magnetohydrodynamics and plasma theory

(a) Problems leading to the magnetohydrodynamic boundary layer
(Hartmann flow) [57].

(b) Diffusion of magnetic field into plasma [58].

(c) Problems of plasma radiation (Troesch equation) [59, 60].

(d) Problems of radiative magnetohydrodynamic channel flow [61].

(¢) Calculation of the effect of a cold wall on a hot plasma [62].

(f) Calculation of the flow of weakly ionized gases [63].

4. Problems of classical mechanics: theory of elasticity

(@) Calculation of N-body trajectories (64, 68].

(b) Nonlinear oscillations.

(¢) Deformation of thin shells [66).

(d) Finite bending of thin-walled tubes [65).

(e) Stress analysis of solid propellant grains [67].



