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Preface

This second edition of Theory and Problems of Strength of Materials adheres to the basic plan of
" the first edmon but with a considerable broadening of scope. As in the earlier edition, the contents
are divided into chapters covering duly-re_ognized areas of theory and study. Each chapter begins
‘with a summary of the pertinent definitions, principles, and theorems, followed by graded sets of
solved and mpplementary problems. Derivations of formulas and proofs of theorems are included
among the solved problems. -The problems have been chosen and solutions arranged so that the
principles are clearly established. They serve to illustrate and amplify the theory, provide the
repetition of basic principles so vital to effective teaching, and bring inte sharp focus those fine points
which are essential to a complete understanding.

. Since publication of the first edition, course offerings in st‘rength of materials have become more

sophisticated and frequently tend to include topics in plastic analysis and design, treatments of shzar
centers, curved beams, and use of singularity functions to describe beam behavior. Also, it has
become rather con ri.n to intruduce the student to strain energy methods of analysis and the
elements of the theor, of elasticity. The present edition includes solved problems in all these areas, as
well as in others not previcusly represented. ‘ ‘

The author is deeply indebted to his wife, Verna B. Nash, and his children, Rebecca and Phillip,
for their patience and.understanding during t* 2 preparation of the manuscript.

WIiLLIAM A. NASH

Amherst, Massachusetts
March 1972



Preface to Sl Edition

The SI edition of Strength of Materials by Nash is an adaptation, not a rewrite, of the second edition. All
of the original examples have been retained and converted where necessary. Terminology, whether affected
by the SI conversion or not, has been revised, and préviously tabulated data given in theiquestions.

In practice it is difficult to obtain accurate material properties, and strength of material analyses are

. approximate. Therefore typical material properties are quoted, rounded-off so as not to overburden the

text with unwieldy figures. Answers to problems are generally given to three significant figures, unless

additional accuracy is required. Students should be aware of the inherent inaccuracies embodied in the
calculations and not be deluded by the accuracy of electronic calculators.

ln the worked examples the arithmetic factors necessary to produce expressions having consistent units
have been shown explicitly. A formalized method for checking units, such as “Unit Cancellation,” should
be considered mandatory in the SI system, as errors of orders of magnitude are easily made.

I would like to express my gratitude to the staff of McGraw-Hill (UK) for their helpful co-operation.
C. E.N. STURGESS

Birmingham
January 1977
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Chapter 1

Tension and Compression

INTERNAL EFFECTS OF FORCES

In this book we shall be concerned with what might be called the internal effects of forces
acting on a body. The bodies themselves will no longer be considered to be perfectly rigid as was
assumed in statics; instead, the calculation of the deformations of various bodies under a variety
of loads will be one of our primary concerns in the study of strength of materials.

AXIALLY LOADED BAR

The simplest case to consider at the start is that of an initially straight metal bar of constant
cross-gection, loaded at its ends by a pair of oppositely dirccted collinear forces coinciding with the
longitudinal axis of the bar and acting through the centroid of each cross-section. For static equilibrium the
magnitudes of the forces must be equal. If the forces are directed away from the bar, the bar is said to be in

tension; if they are directed towarq the bar, a state of compression exists. These two conditions are
illustrated in Fig. 1-1. h

Under the action of this pair of applied forces, internal resisting forces are set up within the bar and
their characteristics may be studied by imagining a plane to be passed through the bar anywhere along its
length and oriented perpendicular to the longitudinal axis of the bar. Such a plane is designated as a—a in
Fig. 1-2(a). For reasons to be discussed later, this plane should not be “too close” to either end of the bar.
If for purposes of analysis the portion of the bar to the right of this plane is considered to be removed, as in
Fig. 1-2(b), then it must be replaced by whatever effect it exerts upon the left portion. By this technique of
introducing a cutting plane, the originally internal forces now become external with respect to the
remaining portion of the body. For equilibrium of the portion to the left this “effect” must be a horizontal
force of magnitude P. However, this force Pacting normal to the cross-section a—a is actually the resultant
of distributed forces acting over this croes-section in a direction normal to it.

el B R

Bar in tension La
(@)
— P 1=
Bar in compression (®) e

Fig. 11 Fig.1-2
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DISTRIBUTION OF RESISTING FORCES

At this point it is necessary to make some assumption regarding the manner of variation of these
distributed forces, and since the applied force P acts through the centroid it is commonly assumed that they
are uniform across the cross-section. Such a distributien is probably never realized exactly because of the
random orizntation of the crystalline grains of which the bar is composed. The exact value of the force
acting on some very small element of area of the crosssection is a function of the nature and orientation of
the crystalline structure at that point. However, over the entire crosssection the variation is described with
reasonable engineering accuracy by the assumption of a uniform distribution.

NORMAL STRESS

Instead of speaking of the internal force acting on some small element of area, it is better for
comparative purposes to treat the normal force acting over a unit area of the cross-section. The intensity of ~
normal-force per unit area is termed the normal stress_ and is expresséd in units of force per unit area, e.g.’
Nm2 (“Pascal”). The phrase total stress is sometimes used to denote the resultant axial force. If the forces
applied to the ends of the bar are such that the bar is in tension, then tensile stresses are set up in the bar; if
the bar is in compression we have compressive stresses. It is essential that the line of action of the applied
end forces pass through the centroid of each cross-section of the bar.

TEST SPECIMENS

The axial loading shown in Fig. 1-2(a) occurs frequently in structural and machine design problérns. To
simulate this loading in the laborator'y, a test specimen is held in the grips of either an electrically driven
gear-type testing machine or a hydraulic machine. Both of these machines are commonly used in materials
~ testing laboratories for applying axial tension.

In an effort to standardize materials testing techniques, various national bodies have issued
specifications that are in common use throughout various countries. More than a score of different type
specimens are prescribed for various metallic and nonmetallic materials for both axial tension and axiai
compression tests. For the present only two of these will be mentioned here, one for metal plates thicker
than 5 mm and appearing as in Fig. 1-3, the other for metals over 37.5 mm thick and having the appearance
shown in Fig. 1-4. The dimensions shown are those specified by the American Society for Testing Materials
(ASTM), but the ends of the test specimens may be of any shape to fit the grips of the testing machine
applying the axialload. As may be seen from these figures, the central portion of the specimen is somewhat
smaller than the end regions so that failure will not take place in the gripped portion. The rounded fillets
shown are provided so that no so-called stress coneentrations will arise at the transition between the two
lateral dimensions. The standard gage length over which elongations are measured is 200 mm for the
specimen shown in Fig. 1-3 and 50 mm for that shown in Fig. 14.
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The elongations are measured by either mechanical or optical extensometers or by ceménting an
electric resistance-type strain gage to the surface of the material. This resistance strain gage consists of a-

number of very fine wires oriented in the axial direction of the bar. As the bar elongates, the electncal B

resistance of the wires changes and this change of resxstance is detected on a Wheatstone bndge ‘and
interpreted as elongation.

NORMAL STRAIN

Let us suppose that one of these tension specimens has been placed in a tension—compression testing
machine and tensile forces gradually applied to the ends. The elongation over the gage length may be
measured as indicated above for any predetermined increments of the axial load. From these values the
elongation per unit length, which is termed normal strain and denoted by 2, may be found by dmdmg the
total elongation A by the gage length L. i.e. € = A/L, and consequently is dimensionless.

STRESS—STRAIN CURVE

As the axial load is gradually increased in increments, the total elongation over the gage length is
measured at each increment of load and this is continued until fracture of the specimen takes place.
Knowing the original cross-sectional area of the test specimen the normal stress, denoted by o, may be
obtained for any value of the axial load merely by the use of the relation

' 2
4
where P denotes the axial load in newtons, and A4 the original cross-sectional area. Having obtained
numerous pairs of values of normal stress 0 and normal strain €, the experimental data may be plotted with
these quantities considered as ordinate and abscissa respectively. This is the stress—sérgin curve or diagram
of the material for this type of loading. Stress—strain diagrams assume widely differing forms for various
materials. Figure 1-5 is the stress—strain diagram for a medium-carbon structural steei, Fig. 16 is for any
alloy steel, and Fig. 1-7 is for hard steels and certain nonferrous alloys. For nonferrous alloys and cast iron
the diagram has the form indicated in Fig. 1-8, while for rubber the plot of Fig. 1.9 is typical. -

Fig.1-5 Fig.1-6 Fig.1-7
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DUCTILE AND BRITTLE MATERIALS

Metallic engineering materials are commonly classed as either ductile or brittle materials. A ductile
material is ‘one having a relatively large tensile strain up to the point of rupture (for example, structural
steel or aluminum) whereas a brittle material has a relatively small strain up to this same point. An arbitrary
strain of 0.05 is frequently taken as the dividing line between these two classes of materials. Cast iron and
concrete are examples of brittle materials.

HOOKE'S LAW

For any mat. .l having a stress—strain curve of the form shown in Figs. 1-5, 1-6, or 1-7, it is evident that
the relation between stress and strain is linear for comparatively small values of the strain. This linear
relation between elongation and the axial force causing it (since these quantities respectively differ from the
strain or the stress only by a constant factor) was first noticed by Sir Robert Hooke in 1678 and is called
Hooke’s law. To describe this initial linear range of action of the material we may consequently write

o=Fe

where E denotes the slope of the straight-ine portion OP of each of the curves in Figs. 1-5,1-6,and 1-7.

MODULUS OF ELASTICITY

The quantity £, i.e. the ratio of the unit stress to the unit strain, is the modulus of elasticity of the
material in tension, or, as it is often called, Young’s modulus. Since the unit strain € is a pure number (being
a ratio of two lengths) it is evident that £ has the same units as does the stress, for example. For many
common engineering materials the modulus of elasticity in compression is very nearly equal to that found
in tension. It is to be carefully noted that the behavior of materials under load as discussed in this book is
restricted {unless otherwise stated) to the linear region of the stress—strain curve.

"The values of £ used in the text are approximate to avoid unnecessary computation, although the
quoted figures are within 5 percent of actual values. For particular materials E can be found from handbooks
or, more precisely, from manufacturers’ catalogs; in all real situations every effort should be made to
ascertain accurate material data.

MECHANICAL PROPERTIES OF MATERIALS

The stress—straincurve shown in Fig. 1-5 may be used to characterize several strength characteristics
of the material, They are:

PROPORTIONAL LIMIT

The ordinate of the point P is known as the proportional limit, i.e. the maximum stress that may be
developed during a simple tension test such that the stress is a linear function of strarmn. For a material
having the stress—strain curve shown in Fig. 1-8, there is no proportional limit.

ELASTIC LIMIT

The ordinate of a point almost coincident with P is known as the elastic limit,i.e. the maximum stress
that may be developed during a simple tension test such that there is no permanent or residual deformation
when the load is entirely removed. For many materials the numerical values of the elastic limit and the
proportional limit are almost identical and the terms are sometimes used synonymously. In those cases
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where the distinction between the two values is evident the elastic limit is almost always greater than the
proportional limit.

ELASTIC AND PLASTIC RANGES

That region of the stress—strain curve extending from the origin to the proportional limit is called the
elastic range; that region of the stress—strain curve extending from the proportional limit to the point of
rupture is called the plastic range.

YIELD POINT

The ordinate of the point Y, denoted by oy, at which there is an increase in strain with no increase in
stress is known as the yield point of the material. After loading has progressed to the point Y, yielding is
said to take place. Some materials exhibit two points on the stress—strain curve at which there is an increase
of strain without an increase of stress. These are called upper and lower yield points.

ULTIMATE STRENGTH OR TENSILE STRENGTH

The ordinate of the point U, the maximum ordinate to the curve, is known either as the ultimare
strength or the tensile strength of the material.

BREAKING STRENGTH
The ordinate of the point B is called the breaking strength of the material.

MODULUS OF RESILIENCE

The work done on a unit volume of material, as a simple tensile force is gradually increased from zero
to such a value that the proportional limit of the material is reached, is defined as the modulus of resilience.
This may be-calculated as the area under the stress—strain curve from the origin up to the proportional limit
and is represented as the shaded area in Fig. 1-5. The units of this quantity are N m m™3. Thus, resilience of
a material is its ability to absorb energy in the elastic range.

MODULUS OF TOUGHNESS

The work done on a unit volume of material as a simple tensile force is gradually increased from zero
to the value causing rupture is defined as the modulus of toughness. This may be calculated as the entire
area under the stress—strain curve from the origin to rupture. Toughness of a material is its ability to absorb
energy in the plastic range of the material.

PERCENTAGE REDUCTION IN AREA

+  The decrease in cross-sectional area from the original area upon fracture divided by the original area
and multiplied by 100 is termed percentage reduction in area. It is to be noted that when tensile forces act
upon a bar, the cross-sectional area decreases, but calculations for the normal stress are usually made upon
the basis of the original area. This is the case for the curve shown in Fig. 1-5. As the strains become
increasingly larger it is more important to consider the instanianeous values of the crosssectional ares
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(which are decreasing), and if s is done the frue stress-strain curve ic obtained. Such a cu-ve has the
appearance shown by the dashed line in Fig. 1-5.

PERCENTAGE ELONGATION

The increase in length (of the gage length) after fracture divided by the initial length and multiplied by
100 is the percentage eiongation. Both the percentage reduction in area and the percentage elongation are
considered to be measures of the ductility of a material.

WORKING STRESS

The above-mentioned strength characteristics may be used to select a so<alled working stress.
Throughout this book all working stresses will be within the elastic range of the material. Frequently such a
stress is determined merely by dividing either the stress at yield or the ultimate stress by a number termed
the safety factor. Selection of the safety factor is based upon the designer’s-judgment and experience.
Specific safety factors are sometimes specified in building codes. See Problems 1.4,1.12,1.13.

STRAIN HARDERING

Ii a ductile material can be stressed considerably beyond the yield peint without failure, it is said to
stroin hardes. Thds is true of many structural metals.

The nonlinear stress—strain curve of a brittle material, shown in Fig. 1-8, characterizes several other
sirength measures that cannot be introduced if the stress—strain curve has a linear region. They are:

YIELD STRENGTH

The ordinate to the stress—strain curve such that the material has a predetermined permanent
deformation or “set” when the load is removed is called the yield strength f the material. The permanent
set is often laken to be a strain of either 0.002 or 0.0035. These values aze of course arbitrary. In Fig. 1-8 a
set €y is denoted on the strain axis and the line 'Y is drawn parailel to the initial tangent to the curve, The
ordinzie of ¥ represents the yield strength of the material, sometimes called the proof stress.

'TANGENT MODULUS

The rate of change of stress with respect to strain is known as the tangent modulus of the material. It is
cssentially an instantaneous modulus given by £, = da/de.

‘There ate other characteristics of a material that are useful in design considerations. They are:

COEFFICIENT OF LINEAR EXPANSION

This is defined as the change of length per unit length of a straight bar subject to a temperature change
~f one degree. kelvin (K). The value of ihis coefficient is independent of the unit of length but does depend
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upon the teruperature scale used. Usi=liv we will consider the Kelvin scale, in which raze ihe coefficient
denoted by a is given for steel, for instance, as 12 x 1078, K ™' Tempeiai ure changes i a structure give rise
to internal stresses just as do applied loads. See Problem 1 7.

POISSON’S RATIO

When a bar is subject to a simple tensile loading there is an increase in length of the bar in the direction
of the load, but a decrease in the lateral dimensions perpendicular to the load. The ratio of the strain in the
lateral direction to that in the axial direction is defined as Poisson’s ratio. It is denoted in this book by the
Greek letter u. For most metals it lies in the range 0.25 to 0.35. See Problems 1.16—1.20.

GENERAL FORM OF HOOKE'’S LAW -

The simple form of Hooke’s law has been given for axial tension when the loading is entirely along one
straight line, i.e. uniaxial. Only the deformation in the direction of the load was considered and it was given
by

g
£€=—
F
In the more general case an element of material is subject to three mutually perpendicular notyaal
stresses Oy, 0y, 0, which are accompanied by the strains €,, €,, €, respectively. By superposing the strain
components arising from lateral contraction due to Poisson’s effect upon the direct strains we obtain the
general statement of Hooke’s law:

i 1 1 )
€x =E[Ox ~uloy, + o)l €y :E[Oy - i(oy +¢;)) €, ;E‘[oz GRS

See Problems 1.17 and 1.20.

ELASTIC VERSUS PLASTIC ANALYSIS

Stresses and deformations in the plastic range of action of a v
inaterial are frequentiy permitted in certain structures. Some
building codes allow particular structural members to adergo
plastic deformation, and certain compunents of aircraft and
missile structures aie deliberately designed to act in the plastic
range so as to achieve weight savings. Furthermore, many
metal-forming processes involve plastic action of the material. For  °w|~ — —— —
small plastic strains of low- and medium-carbon structural steels
the stress-strain curve of Fig. 1.5 is usually idealized by two
<i12'ght lines, one with a slope of £, representing the elastic range,
the other with zero slope representing the plastic range. This plot,
shown in Fig. 1-10, represents a so-alled elastic, prriectly-
plastic material. 1t takes no account of still larger plastic strains
occurring in the strain hardening region shown as the right
portion of the stress—strain curve of Fig. 1-5. £:e Problem 1.21. o T

Fig.1-t¢
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CLASSIFICATION OF MATERIALS

This entire discussion has been based upon the assumptions that two characteristics prevail in the
material. They are that we have a

HOMOGENEOUS MATERIAL, one with the same elastic properties (£, u) at all points in the body, and an

ISOTROPIC MATERIAL, one having the same elastic properties in all directions at any one point of the
body. Not all materials are isotropic. If a material does not possess any kind of elastic symmetry it is called
anisotropic, or sometimes aeolotropic. Instead of having two independent elastic constants (E, u) as an
isotropic material does, such a substance has 21 elastic constants. If the material has three mutually
perpendicular planes of elastic symmetry it is said to be orthotropic. The number of independent constants
is 9 in this case. This book considers only the analysis of isotropic materials.

DYNAMIC EFFECTS

In determination of mechanical properties of a material through a tension or compression test, the rate
at which loading is applied sometimes has significant influence upon the results. In general, ductile materials
exhibit the greatest sensitivity to variations in loading rate, whereas the effect of testing speed on brittle
materials, such as cast iron, has been found to be negligible. In the case of mild steel, a ductile material, it
has been found that the yield point may be increased as much as 170 percent by extremely rapid
application of axial force. It is of interest to note, however, that for this case the total elongation remains
unchanged from that found for slower loadings. '

Solved Problems

1.1 Determine the total elongation of an initially straight bar of length L, cross-sectional area 4, and
modulus of elasticity E if a tensile load P acts on the ends of the bar.

The unit stress in the direction of the force P is merely — .
the load divided by the cross-sectional area, i.e. 0 = P/A. Also : s
the unit strain ¢ is given by the total elongation A divided by ' l
the original length, i.e. ¢ = A/L. By definition the modulus of L "_
. elasticity E is the ratio of o to ¢, i.e. Fig. 1-11

Note that A has the units of length.
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1.2. A surveyor’s steel tape 30 m long has a cross-section of 6 mm by 1 mm. Determine the elongation
when the entire tape is stretched and held taut by a force of 50 N. The modulus of elasticity is
200 GNm™2.

elongation A = FL = (50)(30 x 10°) =1.25 mm
€ AE  ©D@00x10° x10%) =™

1.3. A steel bar of cross-section 500 mm? is acted upon by the forces shown in Fig. 1-12(a). Determine
the total elongation of the bar. For steel, £ = 200 GN m ™

A B C D A B
50 kN 10 kN 45 kN SO kN 50 kN

LSOOmm-lﬂ—- 1 m——‘d— 1.5 m——l
(@)

(b)

: C C
IS kN 2 35 kN 45 kN 45 kN

(0 ' @
Fig.1-12

The entire bar is in equilibrium, hence all portions of it are also in equilibrium. The portion of the bar
between A and B has a resultant force of S0 kN acting over every cross-section, hence a free-body diagram of this
500 mm length appears as in Fig. 1-12(5) above. The force at the right end of this segment must be 50 kN to
maintain equilibrium with the applied force at the left end. The elongation of this portion is

A = PL _ (50 x 10°)(500)

' AE  (500)(200 x 10° x 107¢)

The force acting on the segment between B and C is found by considering the algebraic sum of the forces to

the left of a section between B and C. This indicates that a resultant force of 35 kN acts to the left, i.e. the

section has a tensile force acting upon it. This same result could of course have been obtained by considering the

algebraic sum of the forces to the right of this section. Consequenﬂy, the free-body diagram of the segment BC
appears as in Fig. 1-12(c). The elongation of this portion is

A= (35 x 10%)(1 x 10%)
* (500)(200 x 10° x 107%)
Similarly, the force acting over any cross-section between C and D must be 45 kN to maintain equilibrium

with the applied load at D. The free-body diagram of the segment CD appears as in Fig. 1-12(d). The elongation
of this portion is

=0.25 mm

= 0.35 mm

A= (45 x 10°%)(1.5 x 10%) =0.675 mm
> (500)(200 x 10° x 107¢) .

The total elongation is consequently
A4=0.25+0.35+0.675=1.275 mm

14, The Howe truss shown in Fig. 1-13(a) supports the single load of 480 kN. If the working stress of
the material in tension is taken to be,200 MPa, determine the required crosssectional area of bars
DE and AC. Find the elongation of bar DE over its 6 mlength. Assume that the limiting value of
the working stress in tension is the only factor to be considered in determining the required area.
Take the modulus of elasticity of the bar to be 200 GN m ™




