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PREFACE

AN American student approaching the higher parts of mathe-
matics usually finds himself unfamiliar with most of the main facts
of algebra, to say nothing of their proofs. Thus he has only a
rudimentary knowledge of systems of linear equations, and he knows
next to nothing about the subject of quadratic forms. Students in
this condition, if they receive any algebraic instruction at all, are
usually plunged into the detailed study of some special branch of
algebra, such as the theory of equations or the theory of invariants,
where their lack of real mastery of algebraic principles makes it
almost inevitable that the work done should degenerate to the level
of purely formal manipulations. It is the object of the present
book to introduce the student to higher algebra in such a way that -
he shall, on the one hand, learn what is meant by a proof in algebra
and acquaint himself with the proofs of the most fundamental facts,
and, on the other, become familiar with many important results of

. algebra which are new to him.

The book being thus intended, not as a compendlum, but really,
as its title states, only as an introduction to higher algebra, the
attempt has been made throughout to lay a sufficiently broad founda-
tion to enable the reader to pursue his further studies intelligently,
rather than to carry any single topic to logical completeness. No
apology seems necessary for the omission of even such important
subjects as Galois’s Theory and a systematic treatment of invariants,
A selection being necessary, those subjects have been chosen for
treatment which have proved themselves of greatest importance in
geometry and analysis, as well as in algebra, and the relations of
.the algebraic theories to geometry have been emphasized throughout.
At the same time it must be borne in mind that the subject primarily
treated is algebra, not analytic geometry, so that such geometric
information as is given is necessarily of a fragmentary and some-
what accidental character.

No algebraic knowledge is presupposed beyond a familiarity with
lementary algebra up to and including quadratic equations, and
v
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such a knowledge of determinants and the method of mathematical
induction as may easily be acquired by a freshman in a week or
two. Nevertheless, the book is not intended for wholly immature
readers, but rather for students who have had two or three years’
training in the elements of higher mathematics, particularly in
analytic geometry and the caleulus. In fact, a good elementary
knowledge of analytic geometry is indispensable.

The exercises at the ends of the sections form an essential part

of the book, not merely in giving the reader an opportunity to think g

for himself on the subjects treated, but also, in many cases, by sup-
plying him with at least the outlines of important additional theories.
Ags illustrations of this we may mention Sylvester’s Law of Nullity
(page 80), orthogonal transformations (page 154 and page 173), and
the theory of the invariants of the biquadratic binary form (page 260).

On a first reading of Chapters I-VII, it may be found desirable
to omit some or all of sections 10, 11, 18, 19, 20, 25, 27, 84,35. The
reader may then either take up the subject of quadratic forins
(Chapters VIII-XIII), or, if he prefer, he may pass directly to the
more general questions treated in Chapters XIV-XTX.

The chapters on Elementary Divisors (XX-XXII) form decid-

edly the most advanced and special portion of the book. A person |,
wishing to read them without reading the rest of the book should
first acquaint himself with the contents of sections 19 (omlttlng
Theorem 1), 21-25, 36, 42, 43.

In a work of this kind, it has not seemed advisable to give many
bibliographical references, nor would an acknowledgement at this
point of the sources from which the material has been taken be
feasible. The work of two mathematicians, however, Kronetker
and Frobenius, has been of such decisive influence on the character
of the book that it is fitting that their names receive special men-

tion here. The author would also acknowledge his indebtedness -j

- to his colleague, Professor Osgood, for suggestions and criticisms
relating to Chapters XIV-XVTI.

This book has grown out of courses of lectures which have been
delivered by the author at Harvard University during the last ten
years. His thanks are due to Mr. Duval, one of his former pupils,
without whose assistance the book would probably never have been
written.
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INTRODUCTION TO HIGHER ALGEBRA

CHAPTER 1

POLYNOMIALS AND THEIR MOST FUNDAMENTAL
PROPERTIES ' '

1. Polynomials in One Variable. By an integral rational fane-
tion of 2, or, as we shall say for brevity, a polynomial in #, is meant
a function of z determined by an expression of the form

¢)) 0 7% + gzt + o + 2%

where the «’s are integers positive or zero, while the ¢’s are any con-
" stants, real or imaginary. We may without loss of generality
assume that no two of the «'s are equal. This being the case, the
expressions ¢z are called the terms of the polynomial, ¢; is called
the coefficient of this term, and «; is called its degree. The highest
degree of any term whose coefficient is not zero is called the degree
of the polynomial.

It should be noticed that the conceptions just defined — terms,
coefficients, degree — apply not to the polynomial itself, but to the
particular ezpression (1) which we use to determine the polynomial,
and it would be quite conceivable that one and the same function of
= might be given by either one of two wholly different expressions
of the form (1). We shall presently see (cf. Theorem 5 below)
that this cannot be the case except for the obvious fact that we

may insert in or remove from (1) any terms we please with zero-

coefficients. ,
By arranging the terms in (1) in the order of deereasing a’s and

supplying, if necessary, certain missing terms with zero coefficients,
~ we may write the polynomial in the normal form

(2) g2+ a @ e A Tt a,
B o 1
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It should, hdw‘ever, constantly be borne in mind that ‘a polynomial
in this form is not necessarily of the nth degree; but will be of the
nth degree when and only when a,+ 0.

DeriniTioN. Two polynomials, fi(z) and fy(x), are said to be
tdentically equal (fy=f,) if they are equal for all values of z. A
polynamial f(z) ts said to vanish identically (f=0) if it vanishes for
all values of z. ,

We learn in elementary algebra how to add, subtract, and multi-
ply * polynomials; that is, when two polynomisals f,(z) and f3(z) are
given, to form new polynomials equal to the sum, difference, and
product of these two. :

THEOREM 1. If the polynomial
J@)=a2*+a 2" 4 - ta,

vanishes when T = a, there exists another polynomial
$(@z)=a,2" " +aiz" P+ - +ay
such that @)=l — a)dy(2).
For since by hypothesis f(«) = 0, we have
f@)=f(z) —f(@)=ay(a"— ") + a,(a*' — &* ) + +- + 2, (2 — ).
' Now by the rule of elementary algebra for multiplying together

two polynomials we have v
—dt=(r—a)(#* a2zt 4 L+ o)
_ Hence
F@)= (5 — @[3 + 0+ e + &)+ 4y (2 a4
+a* )4 e+ a,.-x]

If we take as ¢,(z) the polynomia.l in brackets, our theorem is
proved.

Suppose now that Bis another value of z distinct from « for which

J(z) is zero. Then F(B)=(B— &)y (B) =0

* The question of division is somewhat more complicated and will be consideréd
in §63. -
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and gince 8 —a+0, $;(8)=0. We can therefore apply the theo
rein just proved to 'the polynomial ¢,(z), thus getting a new

polynomial $y(2) = a2 + ol 20 4 e al
such that - d(z)=(z— B)Py(2),
and therefore f@)y=(z— a)(z — B)$y(x).

Proceeding in this way, we get the following general result:
THEOREM 2. If ay, oy, -+ a; are k distinct constants, and if

f(@)=ayz" + ay @ + - +a, (n2k),
and Sy =f(ag)= - =f(or) =0,
then PR CETCETICETARICEPATIEN
where d(z)=ayz*t + byz" 4 e by

Applying this theorem in particular to the case n = k, we see that
if the polynomial f(z) vanishes for n distinct values ), a5 -+ of z,

then f(x) = ao(x - al)(f — a‘z) ves (z —_ an)'

Accordingly, if a,# 0, there can be no value of = other than a;, -,
for which f(z)=0. We have thus proved

THEOREM 3. A polynomial of the nth degree in x cannot vanish
for more than n distinet values of z.

Since the only polynomials which have no degree are those all of
whose coefficients are zero, and since such polynomials obviously
vanish-identically, we get the fundamental result :

THEOREM 4. A necessary and sufficient condition that a polyno-
mial in z vanish identically is that all its coefficients be zero.

Since two polynomials in z are identically equal when and only
when their difference vanishes identically, we have

THEOREM 5. A necessary and sufficient condition that two polyno- '

mials in z be identically equal is that they have the same coefficients.

This theorem shows, as was;sa‘id above, that the terms, coefficients,
and degree of a polynomial depend merely on the polynomial itself,
not on the special way in which it is expressed.

L
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2. Polynomials in More than One Variable. A function of (z, y)
is called a polynomial if it is given by an expression of the form

eymyhi+ cgzayh + - + cw‘q"n,
where the a’s and 8's are integers positive or zero.

More generally, a function of (zy, 25, :+* 2,) is called a polynomial
if it is determined by an expression of the form

(1) clzl‘lxzﬁx Y A c’zlﬂnxah e I e ckzl‘gzzh s Ty,

where the a's, 8's, --- ¥'s are integers positive or zero.

Here we may assume without loss of generality that in no two
terms are the exponents of the various 2’s the same ; that is, that if
a4 = a; Bi=Bj9 o = ey

then V; +* V.

This assumption being made, ¢;z;%z,% .- 2% is called a term of the
polynomial, ¢; its coefficient, a; the degree of the term in xy, B, in z,,
etc., and a;+ B;+ - + v, the total degree, or simply the degree, of
the term. The highest degree in z; of any term in the polynomial
whose coefficient is not zero is called the degree of the polynomial
in z, and the highest total degree of any term whose coefficient is
not zero is called the degree of the polynomial. '

Here, as in § 1, the conceptions just defined apply for the present
not to the function itself but to the special method of representing
it by an expression of the form (1). We shall see presently, how-
ever, that this method is unique. ’

Before going farther, we note explicitly that according to the
definition we have given, a polynomial all of whose coefficients are zero
hae no degree.

When we speak of a polynomial in » variables, we do not nec-
essarily mean that all n variables are actually present. One or more
of them may have the exponent zero in every term, and hence not
appear at all. Thus a polynomml in one variable, or even a con-
stant, may be regarded as a special case of a polynomial in any
larger number of variables,

A polynomisal all of whose terms are of the same degree is said
to be homogeneous. Such polynomials we will speak of as forms*

* The e is diversity of usage here. Some writers, following Kronecker, apply the '

term form to all polynomials, - On the other hand, homogensous polynomials are often
spoken of as gquantics by English writers,
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distinguishing between binary, ternary, quaternary, and in general,
n-ary forms according to the number of variables involved, binary
forms involving two, ternary three, etc.

Another method of classifying forms is according to their
degree. We speak here of linear forms, quadratic forms, cubic
forms, etc., according as the degree is 1, 2, 3, etc. We will, how-
ever, agree that a polynomial all of whose coefficients are zero may
also be spoken of indifferently as a linear form, quadratic form,
cubic torm, ete., in spite of the fact that it has no degree.

If all the coefficients of a polynomial are real, it is called a real
polynomzal even though, in the course of our work, we attnbute
imaginary values to the variables.

It is frequently convenient to have a polynomial in more than one
variable arranged according to the descending powers of some one
of the variables. Thus a normal form in which we may write a
polynomial in n variables is

b @y -+ Za) 2"+ i@y o Ta) 2"+ 00+ Ty - T,
the ¢’s being polynomials in the n — 1 variables (z,, .- z,).

We learn in elementary algebra how to add, subtract, and multiply.
polynomials, getting as the result new polynomials.

DEFINITION.  Two polynomials in any number of variables ars
said to be identically equal if they are equal for all values of the vari.
ables. A polynomial is said to vanish identically if it vanishes for
all values of the variables.

THEOREM 1. A necessary and sufficient condition that a polyno-
mial in any number of variables vanish identically is that all its coeffi-
clents be zero,

. That this is a sufficient condition is at once obvious. To prove
that it is a necessary condition we use the method of mathematical
induction. Since we know that the theorem is true in the case of
one variable (Theorem 4, § 1), the theorem will be completely proved
if we can show that if it is true for a certain number n — 1 of vari-
ables, it is true for n variables.

Suppose, then, that

f(xlv ez = ¢0(x2’ ...;,;”)xIM+ ¢1(z2, z,.)a:l"""+ vt Pl e 2,)

vanishes identically. If we assign to (zy --- z,) any fixed values
(@} -+ L), f becomes a polynomial in 2, alone, which, by hypothesis,
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vanishes for all values of z;. Hence its coefficients must, by Theorem
4,81,all b : .
4, § 1, all be zero ¢i(z/2’ v gl)=0 (:=0,1, s m)

That is, the polynomials ¢y ¢;, *** ¢, vanish for all values of the
variables, since (&}, ++- 2,) was any set of values. Accordingly, by
the assumption we have made that our theorem is true for polyno-
mials in n — 1 variables, all the coefficients of all the polynomials
P P15+ Pm BTE ZETO. These, however, are simply the coefﬁments
of £ Thus our theorem is proved

Since two polynommls are identically equal when and only
when their difference is identically zero, we infer now at once the
further theorem:

THEOREM 2. A mnecessary and sufficient condition that two poly-
nomials be identically equal is that the coefficients of their corresponding
terms be equal.

“We come next to

TreoreM 3. If f and f; are polynomtal& in any number of vari-
ables of degrees m, and m, respectwel;y, the product f, f; will be of de-
gree my + m,.

This theorem is obvmusly true in the case of polynomlals in one
variable. If, then, assuming it tc be true for polynomials in n —1
variables wé can prove it to be true ‘or polynomials in » variables,
the proof of our theorem by the method of mathematical induction
will be complete.

Let us look first at the special case in which both polynomials
are homogeneous. Here every term we get by maultiplying them
together by the method of elementary algebra is of degree m; + m,.
Our theorem will therefore be proved if we can show that there is at
least one term in the product whose coefficient is not zero. For
this purpose, let us arrange the two polynomials f; and f; accordmg
to descending powers of z,,

Silzy o z)= Po(zy - ) zt + ‘M(Tzv zn)zxk‘-l‘f‘ et
Filar v 2) =08 (@ o )i+ G (2 o 2) A

Here we may assume that neither ¢} nor ¢ vanishes identically.
Sizce f; and f; are homogencous, ¢; and ¢¢ will also be homogeneous
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* of degrees m, — ky'and m,— k, respectively. In the product J1/; the
terms of highest degree in z; will be those in the product

b5 (20 2B (2 -+ )T,

and since we assume our theorem to hold for polynomials inn—1
variables, ¢4} will be a polynomial of degree m, + my—k —k,.
Any term in this product whose coefficient is not zero gives us when
multiplied by %% a term of the product f, f; of degree m,+m,
whose coefficient is not zero. Thus our theorem is proved for the
case of homogeneous polynomials.

' Let us now, in the general case, write f; and f; in the forms

fi@ o ) E BT+ Te) F Blua (T T+ s
(T - 2,) = Py (210 -+ Ta) + Byi (25 Zp)+ oo

where ¢{ and ¢/ are homogéneous polynomials which are either of
degrees ¢ and j respectively, or which vanish identically. Since,
by hypothesis, f; and f; are of degrees m; and m, respectively,
é., and @[, will not vanish identically, but will be of degrees
m; and my,

The terms of highest degree in the product f, f; will therefore be
the terms of the product ¢, ¢/, and this being & product of homo-
geneous polynomials comes under the case just treated and is there-
fore of degree m; + m; The same is therefore true of the product
fiJf» and our theorem is proved. .

By a successive application of this theorem we infer

COROLLARY. If k polynomials are of degrees my, mq, --- M, re-
spectively, their product is of degree my+ my+ -+ + M.

We mention further, on account of their great importance, the
two rather obvious results : :

THEOREM 4. If the product of two or more polynomials is identi-
cally zero, at least one of the factors must be identically zero.

For if none of them were identically zero, they would all have
definite degrees, and therefore their product would, by Theorem 8,
‘have a deﬁnife degree, and would therefore net vanish identically.

1t is from this theorem that we draw our justification for cancel-
ling out from an identity a factor which we know to be not identi-
cally zero. : ‘ ’
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THEOREM &. If f(z,, - %,)18 @ polynomial whick s not identically
zero, and if ¢(z,, -+ z,) vanishes at all points where f does not vanish,
then ¢ vanishes tdentically.

This follows from Theorem 4 when we notice that f¢ =0.

EXERCISES °
1. If f and ¢ are polynomials in any number of variables, what can be inferred
from the identity f?=¢? concerning the relation between the polynomials fand ¢?

2. If f, and f, are polynomials in (=), --- ,) which are of degrees m, and m,
respectively in zi, prove that their product is of degree m, 4 my in 2y

3. Geometric Interpretations. In dealing with functions of a
single real variable, the different values which the variable may
take on may be represented geometrically by the points of a line;
it being understood that when we speak of & point # we mean the
point which is situated on the line at a distance of z units (to the
right or left according as z is positive or negative) from a certain
fixed origin O, on the line. Similarly, in'the case of functions of
two real variables, the sets of values of the variables may be pictured
geometrically by the points of a plane, and in the case of three real.
variables, by the points of space ; the set of values represented by a
point being, in each case, the rectangular codrdinates of that point.
When we come to functions of four or more variables, however, this
geometric representation is impossible.

The complex variable z = § + #¢ depends on the two independent
real variables £ and 7 in such a way that to every pair of real values
(£, ) there corresponds one and only one value of z. The different
values which a single complex variable may take on may, therefore,
be represented by the points of a plane in which (£, 5) are used as
cartesian codrdinates. In dealing with functions of more than one
complex variable, however, this geometric representation is impos-
sible, since even two complex variables z=§£+ i, y=§,+ 7,7 are
equivalent to four real variables (, », £, 7).

By the neighborhood of a point z=a we mean that part of the
line between the points z=a — « and z= a + « (@ being an arhitrary
positive constant, large or small), or what is the same thing, all
points whose cobrdinates z satisfy the inequality [z —a|<a.*

# We use the symbol |Z | to denote the absolute value of Z, f.e. the numerical
value of Z if Z is real, the modulus of Z if Z s imaginary.
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Similarly, by the neighborhood of a p‘oint (a, b) in a plane, we
shall mean all points whose codrdinates (z, y) satisfy the inequalities

lz—a|<a, [y—bl<8B,

where o and 8 are positive constants. This neighborhood thus con-
sists of the interior of a rectangle of which (a, 8) is the center and
whose sides are parallel to the codrdinate axes.

By the neighborhood of a point (a, b, ¢) in space we mean all
points whose codrdinates (z, y, 2) satisfy the inequalities

lz—a|<e, |y—bl<B, |z—c|<y.

In all these cases it will be noticed that the neighborhood
may be large or small according to the choice of the constants
a B 9. .

If we are dealing with a single complex variable z = £+ #i, we
understand by the neighborhood of a point a all points in the plane
of complex quantities whose complex codrdinate z satisfies the in-
equality | — a| < @, « being as before a real positive constant. Since
|z — a| is equal to the distance between z and @, the neighborhood of
a now consists of the interior of a circle of radius « described about
a as center. ]

It is found convenient to extend the geometric terminology -
we have here introduced to the case of any number of real or
complex variables. Thus if we are dealing with n independent
variables (z;, @ - z,) We speak of any particular set of values
of these variables as & point in space of n dimensions. Xere
we have to distinguish between real points, that is sets of values
of the z's which are all real, and tmaginary points in which
this is not the case. In using these terms we do not propose
even to raise the question whether in any geometric semse there
is such a thing as space of more than three dimensions. We
merely use these terms in a whelly conventional algebraic
gense because on the one hand they have the advantage of" .
conciseness over the ordinary algebraic terms, and on the other -
hand, by calling up in our minds the geometric pictures of three
dimensions or less, this terminology is often suggestive of new
relations which might otherwise not present themselves to us so
readily. i
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By the neighborhood of the point (a,, Oy - a,) we understand all -
points which satisfy the mequahtxes :

f#, —ay| < &y, (g ag| < gy o |5y — @0] < gy

where @, a,, --- @, are real positive constants.

If, in particuler, (@, @, > a,) is a real point, we may speak of
the real neighborhood of this point, meaning thereby all real points
(%) 7y, -+ 2,) which satisfy the above inequalities.

As an illustration of the use to which the conception of the
neighborhood of a point can be put in algebra, we will prove the
following important theorem : .

THEOREM 1. A necessary and sufficient condition that a poly-
nomial f(z,, -+ 2,) vanish identically is that it vanish throughout the
neighborhood of & point (a;, ++- a,).

That this is_a necessary ¢ondition is obvious. To prove tha.t‘it
is sufficient we begm with the case » =1.

Suppose then that f(z) vanishes throtighout a certain neighbor-
hood of the point z=a. If f(x) did not vanish identically, it would
be of some definite degree, say k, and therefore could not vanish at
more than % points (cf. Theorem 3, § 1). This, however, is not the
case, since it vanishes at an infinite number of points, namely all
‘points in the neighborhood of z=a. Thus our theorem is proved
in the case n=1. :

Turning now to the case n = 2, let -

J(z, ¥) = d(9)7* + y(y)z* 1+ o+ + di(y)

be a polynomial which vanishes throughout a certain neighborhood
of the point (4, 8), say when

lo—al<a |y—b<A8.
Let y, be any constant satisfying the inequality
U g b <B.

Then f(z, y,) is a polynominal in z alone which vanishes whenever
|z —al<e Hence, by the case n=1 of our theorem, f(z, y,)=0.

That is,
$o(%0) = $1(¥0) == 4’*(’0) =0.



