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Preface

.

It is more than twenty years since the author began the project of writing the
three volumes of Lectures in Absiract Algebra. The first and second of these
books appeared in 1951 and 1953 respectively, the third in 1964. In the period
which has intervened since this work was conceived—around 1950—substantial
progress in algebra has occurred even at the level of these texts. This has
taken the form first of all of the introduction of some basic new ideas. Notable
examples are the development of category theory, which provides a useful
framework for a large part of mathematics, homological algebra, and appli-
cations of model theory to algebra. Perhaps even more striking than the advent
of these ideas has been the acceptance of the axiomatic conceptual method of
abstract algebra and its pervading influence throughout mathematics. It is
now taken for granted that the methodology of algebra is an essential tool in
mathematics. On the other hand, in recent research one can observe a return
“to the challenge presented by fairly concrete problems, many of which require
for their solution tools of considerable technical complexity.
Another striking change that has taken place during the past twenty years—
especially since the Soviet Union startled the world by orbiting its ‘“sputniks’’
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—has been the upgrading of training in mathematics in elementary and sec-
ondary schools. (Although there has recently been some regression in this
process, it is to be hoped that this will turn out to be only a temporary aber-
ration.) The upgrading of school mathematics has had as a corollary a cor-
responding upgrading of college mathematics. A notable instance of this is
the early study of linear algebra, with a view of providing the proper back-
.ground for the study of multivariable calculus as well as for applications to
other fields. Moreover, courses in linear algebra are quite ofien followed
immediately by courses in ‘“‘abstract™ algebra, and so the type of material
which twenty years ago was taught at the graduate level is now presented to
students with comparatively little experience in mathematics.

The present book, Buasic Algebra 1, and the forthcoming Basic AIgebra 11
were originally envisioned as new editions of our Lectures. However, as we
began to think about the task at hand, particularly that of taking into account
the changed curricula in cur undergraduate and graduate schools, we de-
cided to organize the material in a manner quite different from that of our
earlier books: a separation into two levels of abstraction, the first—treated in
this volume—to encompass those parts of algebra which can be most readily
appreciated by the beginning student. Much of the material which we present
here has a classical flavor. It is hoped that this will foster an appreciation of
the great contributions of the past and especially of the mathematics of the
nineteenth century. In our treatment we have tried to make use of the most
efficient modern tools. This has necessitated the development of a substantial
body of foundational material of the sort that has become standard in text
books on abstract algebra. However, we have tried throughout to bring_to
the fore well-defined’ objecuves which we believe will prove appealing even to
a student with little background in algebra. On the other hand, the topics
considered are probed to a depth that often goes considerably beyond what is
‘customary, and this will at times be quite demanding of talent and concentra-
tion on the part of the student. In our second volume we plan to follow a
more traditional course in presenting material of a more abstract and so-
phisticated nature. It is hoped that after the study of the first volume a student
will have achieved a level of maturity that will enable him to take in stride
the level of abstraction of the second volume.

We shall now give a brief indication of the contents and organization of
Basic Algebra 1. The Introduction, on set theory and the number system of
the integers, includes material that will be familiar to most readers: the
algebra of sets, definition of maps, and mathematical induction. Less fa-
miliar, and of paramount importance for subsequent developments, are the
concepts of an equivalence relation and quotient sets defined by such relations.
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We iptroduce also commutative diagrams and the factorization of a map
through an equivalence relation. The fundamental theorem of arithmetic is
proved, and a proof of the Recursion theorem (or defintion by induction) is
included.

Chapter 1 deals with monoids and groups. Our starting point is the concept
of a monoid of transformations and of a group of transformations. In this
respect we follow the historical development of the subject. The concept of
homomorphism appears fairly late in our discussion, after the reader has had
a chance to absorb some of the simpler and more intuitive ideas. However,
once the concept of homomorphism has been introduced, its most important
ramifications (the fundamental isomorphism theorems and the correspondence
between subgroups of a homomorphic image and subgroups containing the
kernel) are developed in considerable detail. The concept of a ¥roup acting on
a set, which now plays such an important role in geometry, is introduced and
illustrated with many examples. This leads to a method of enumeration for
finite groups, a special case of which is contained in the class equation. These
results are applied to derive the Sylow theorems, which constitute the last
topic of Chapter 1.

The first part of Chapter 2 repeats in the context of rings many of the ideas
that have been developed in the first chapter. Following this, various con-
structions of new rings from given ones are considered: rings of matrices,
fields of fractions of commutative domains, polynomial rings. The last part
of the chapter is devoted to the elementary factorization theory of commuta-
tive monoids with cancellation property and of commutative domains.

The main objective in Chapter 3 is the structure theory of finitely generated
modules over a principal ideal domain and its applications to abelian groups
and canonical forms of matrices. Of course, before this can be achieved it is
necessary to introduce the standard definitions and concepts on modules.
The analogy with the concept of a group acting on a set is stressed, as is the
idea that the concept of a module is a natural generalization of the familiar
notion of a vector space. The chapter concludes with theorems on the ring of
endomorphisms of a finitely generated module over a principal ideal domain,
which generalize classical results of Frobenius on the ring of matrices com-
muting with a given matrix.

Chapter 4 deals almost exclusively with the ramifications of two classical
problems: solvability of equations by radicals and constructions with straight-
edge and compass. The former is by far the more difficult of the two. The
tool which was forged by Galois for handling this, the correspondence be-
tween subfields of the splitting field of a separable polynomial and subgroups
of the group of automorphisms, has attained central importance in algebra
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and numbér theory. However, we believe that at this stage it is more effective
to concentrate on the problems which gave the original impetus to Galois’
theory and to treat. these in a thoroughgoing manner. The theory of finite
groups which was initiated in Chapter 1 is amplified here by the inclusion of
the results needed to establish Galois® criterion for solvability of an equation
by radicals. We have included also a proof of the transcendence of = since
this is needed to prove the impossibility of “squaring the circle” by straight-
edge and compass. (In fact, since it requires very little additional effort, the
more general theorem of Lindemann and Weierstrass on algebraic inde-
pendence of exponentials has been proved.) At the end of the chapter we have
undertaken to round out the Galois theory by applying it to derive the main
results on finite fields and to prove the theorems on primitive elements and
normal bases as well as the fundamental theorems on norms and traces.

Chapter 5 continues the study of polynomial equations. We now operate in
a real closed fleld—an algebraic generalization of the field of real numbers.
We prove a generalization of the “fundamental theorem of algebra”: the
algebraic closure of RGW/—1) for R any real closed field. We then derive
Sturm’s theorem, which gives a constructive method of determining the num-
ber of roots in R of a polynomial equation in one unknown with coefficients
in R. The last part of the chapter is devoted to the study of systems of poly-
nomial equations and inequations in several unknowns. We first treat the
purely algebraic problem of elimination of unknowns in such a system and
then establish a far-reaching generalization of Sturm’s theorem that is due
to Tarski. Throughout this chapter the emphasis is on constructive methods.

The first part of Chapter 6 covers the basic theory of quadratic forms and
alternate forms over an arbitrary field. This includes Sylvester’s theorem on
the inertial index and its generalization that derives from Witt’s cancellation
theorem. The important theorem of Cartan-Dieudonné on the generation of
the orthogonal group by symmetries is proved. The second part of the chapter
is concerned with the structure theory of the so-called classical groups: the
full linear group, the orthogonal group, and the symplectic group. In this
analysis we have employed a uniform method applicable to all three types of
groups. This method was originated by Iwasawa for the full linear group
and was extended to orthogonal groups by Tamagawa. The results provide
some important classes of simple groups whose orders for finite fields are
easy to compute.

Chapter 7 gives an introduction to the theory of algebras, both associative
and non-associative. An iniportant topic in the associative theory we consider
is the exterior algebra of a vector space. This algebra plays an important role
in geometry, and is applied here to derive the main theorems on determinants.
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We define also the regular representation, trace, and norm of an associative
algebra, and prove a general theorem on transitivity of these functions. For
non-associative algebras we give definitions and examples of the most impor-
tant classes of non-associative algebras. We follow this with a completely
elementary proof of the beautiful theorem on composition of quadratic forms
which is due to Hurwitz, and we conclude the chapter with proofs of Fro-
benius’ theorem on division algebras over the field of real numbers and
Wedderburn’s theorem on finite division algebras.
~ Chapter 8 provides a brief introduction to lattices and Boolean algebras.
The main topics treated are the Jordan-Holder theorem on semi-modular
lattices; the so-called ““fundamental theorem of projective geometry”; Stone’s
theorem on the equivalence of the concepts of Boolean algebras and Boolean
rings, that is, rings all of whose elements are idempotent; and finally the
Mébius function of a partially ordered set. ’
Basic Algebra 1 is intended to serve as a text for a first course in algebra ‘
beyond linear algebra. It contains considerably more material than.can be
covered in a year’s course. Based on our own recent experience with earlier
versions of the text, we offer the following suggestions on what might be
covered in a year’s course divided into either two semesters or three quarters.
We have found it possible to cover the Introduction (treated lightly) and nearly
all the material of Chapters 1-3 in one semester. We found it necessary to
omit the proof of the Recursion theorem in the Introduction, the section on
free groups in Chapter 1, the last section (on “rngs”) in Chapter 2, and the
last section of Chapter 3. Chapter 4, Galois theory, is an excellent starting
point for a second semester’s course. In view of the richness of this material
not much time will remain in a semester’s course for other topics. If one makes
some omissions in Chapter 4, for example, the proof of the theorenm of Linde-
mann-Weierstrass, one is likely to have several weeks left after the completion
of this material. A number of alternatives for completing the semester may
be considered. One possibility would be to pass from the study of equations in
one unknown to systems of polynomial equations in several unknowns. One
aspect of this is presented in Chapter 5. A part of this chapter would certainly
fit in well with Chapter 4. On the other hand, there is something to be said
for making an abrupt change in theme. One possbility would be to take up
the chapter on algebras. Another would be to study a part of the chapter on
quadratic forms and the classical groups. Still another would be to study the
last chapter, on lattices and Boolean algebras. :
A program for a course for three quarters might run as follows: Introduction
and Chapters 1 and 2 for a first quarter; Chapter 3 and a substantial part of
Chapter 6 for a second quarter. This will require a bit of filling in of the field
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theory from Chapter 4 which is needed for Chapter 6. One could conclude
with a third quarter’s course on Chapter 4, the Galois theory.

It is hoped that a student will round out- formal ceurses based on the text
by independent reading of the omitted material. Also we feel that quite a
few topics lend themselves to programs of supervised independent study.

We are greatly indebted to a number of friends and colleagues for reading
portions of the penultimate version of the text and offering valuable sugges-
tions which were taken into account in preparing the final version. Walter
Feit and Richard Lyons suggested a number of exercises in group theory:
Abraham Robinson, Tsunco Tamagawa, and Neil White have read parts of
the book on whith they are experts (Chapters 5, 6, and 8 respectively) and
detected some flaws which we had not noticed. George Seligman has read the
entire manuscript and suggested some substantial improvements. S. Robert
Gordon, James Hurley, Florence Jacobson, and David Rush have used parts
of the carlier text in courses of a term or more, and have called our attention
to numerous places where improvements in the exposition could be made.

A number of people have played an important role in the production of
the book. among them we mention especially Florence Jacobson and Jerome
Katz, who have been of great assistance in the tedious task of proofreading.
Finally, we must add a special word for Mary Scheller, who cheerfully typed
the entire manuscript as well as the preliminary version of about the same
length.

We are deeply indebted to the individuals we have mentioned—and to
others—and we take this opportunity to offer our sincere appreciation and
thanks.

Hamden, Connecticut Nathan Jacobson
November 21, 1973
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INTRODUCTION

Concepts from Set Theory.
The Integers

The main purpose of this volume is to provide an introduction to the basic
structures of algebra: groups, rings, fields, modules, algebras, and lattices—
concepts that give a natural setting for a large body of algebra, including classical
algebra. It is noteworthy that many of these concepts have arisen either to solve
concrete problems in geometry, number theory, or the theory of algebraic
equations, or to afford a better insight into existing solutions of such problems.
A good example of the interplay between abstract theory and concrete problems
can be seen in the Galois theory, which was created by Galois to answer a
concrete question: “ What polynomial equations in one unknown have solutions
expressible in terms of the given coefficients by rational operations and extrac-
tion of roots?”’ To solve this we must first have a precise formulation of the
problem, and this requires the concepts of field, extension field, and splitting
field of a polynomial. To understand Galois’ solution of the problem of alge-
braic equations we require the notion of a group and properties of solvable
groups. In Galois’ theory the results were stated in terms of groups of permuta-
tions of the roots. Subsequently, a much deeper understanding of what was
involved emerged in passing from permutations of the roots to the more
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abstract notion of the group of automorphisms of an extension field. All of this
will be discussed fully in Chapter 4.

Of course, once the machinery has been developed for treating one set of
problems, it is likely to be useful in other circumstances, and, moreover,
it generates new problems that appear interesting in their own right.

Throughout this presentation we shall seek to emphasize the relevance of the
general theory in.solving interesting problems, in particular, problems of classi-
cal origin. This will necessitate developing the theory beyond the foundational
level to get at some of the interesting theorems. Occasionally, we shall find it
convenient to develop some of the applications in exercises. For this reason, as
well as others, the working of a substantial number of the exercises is essential
for a }horough understanding of the material.

The basic ingredients of the structures we shall study are sets and mappings
(or, as we shall call them in this book, maps). It is probable that the reader
already has an adequate knowledge of the set theoretic background that is
required. Nevertheless, for the purpose of fixing the notations and terminology,
and to highlight the special aspects of set theory that will be fundamental for us,
it seems desirable to indicate briefly some of the elements of set theory.! From
the point of view of what follows the ideas that need to be stressed concern
equivalence relations and the factorizagion of a mapping through an equivalence
relation. These will reappear in a multitude of forms throughout our study. In
the second part of this introduction we shall deal briefly with the number
system Z of the integers and the more primitive system N of natural numbers or
counting numbers: 0, 1, 2, ..., which serve as the starting point for the con-
structive development of algebra. In view of the current emphasis on the de-
velopment of numbe:r systems in primary and secondary schools, it seems
superfluous to deal with N and Z in a detailed fashion. We shall therefore be
content to review in outline the main steps in one of the ways of introducing N
and Z and to give careful proofs of two results that will be needed in the dis-
cussion of groups in Chapter 1. These are the existence of greatest common
divisors (g.c.d.’s) of integers and *“the fundamental theorem of arithmetic,”
which establishes the unique factorization of any natural number 0,1 as a
product of prime factors. Later (in Chapter 2), we shall derive these results
again as special cases of the arithmetic of principal ideal domains.

0.1 TH% POWER SET OF A SET

We begin ‘6ur discussion with a brief survey of some set theoretic notions which
will play an essential role in this book.’ :

! For a general reference book on set theory adequate for ouir purposes we refer the reader
to the very attractive little book, Naive Set Theory, by Paul R. Halmos, Van Nostrand Rein-
hold, 1 : .



0.1 The Power Set of a Set 3

Let S be an arbitrary set (or collection) of elements which we denote as
a, b, c, etc. The nature of these elements is immaterial. The fact that an element
a belongs to the set S is indicated by writing a € § (occasionally § 3 a) and the
negation of g € Sis written asa ¢ S. If Sis a finite set withelementLa,1 < i < n,
then we write S = {a,,4,, . . ., d,}. Any set S gives rise to another set 2(S), the
set of subsets of S. Among these are included the set § itself and the vacuous
subset or null set, which we denote as @. For example, if S is a finite set of n
elements, say, S = {a;, g, . . ., a4}, then 2(S) consists of @, the n sets {a;} con-
taining single elements, n(n — 1)/2 sets {a,, a;}, i # j, containing two elements,

(':) =nfi'(n—!'=nn—1)--(n—i+ 1)/1-2---.i subsets containiny i

elements, and sg on. Hence the cardinality of S, that is, the number of elements

in 2(8) is
1+ ('1’) + (;) Foeet (:) =@ +1r=2n

We shall call 2(S), the power set of the set S.2 Often we shall specify a subset of
S by a property or set of properties. The standard way of doing this is to write

A={xeS| -}

(or, if S is clear, A = {x|---}) where - - -lists the properties characterizing A.
For example, if Z denotes the set of integers, then N = {x € Z | x > 0} defines
the subset of non-negative integers, or natural numbers.

1f A and B € 2#(S) (that is, 4 and B are subsets of S) we say that A4 is contained
in B or is a subset of B (or B contains A) and denote thisas 4 < B(or B> A)if
every element a in A is also in B. Symbolically, we can write this as ae 4 =
a € B where the = is read as “implies.” The statement A = B is equivalent to
the two statements 4 © B and B > A4 (symbolically, 4 = B<>4 > B and
B > A where <> reads “if and ox{ly if’).IfA< Band 4 # Bwe write A ¢ B
and say that A is a proper subset of B. Alternatively, we can write B 2 A4.

If A and B are subsets of S, the subset of S of elements ¢ such that ¢ € 4 and
c € B is called the intersection of A and B. We denote this subset as 4 N B. If
there are no elements of S contained in both A4 and B, thatis, 4 N B = g, then
A and B are said to be disjoint (or non-overlapping). The union (or logical sum)
A U Bof A and B is the subset of elements d such that either de 4 or d€ B. An
important property connecting N and U is the distributive law:

m i An(BuC)=(AnB)u(An‘C)
3 This is frequenily called the Boolean of S, #(S), after Geérg‘e Boole who initiated its

systematic study. The Jusuﬁcation of the terminology “ power set” is indicated in the foot-
note on p. 5.
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This can be indicated pictorially by

CRDEE

where the shaded region represents (1). To prove (1), let xe 4 N (B U C). Since
x€(BU C) either xe B or xe C, and since x € A either xe(4 N B) or xe
(4 N C). This shows that AN(BUC)< (4N B)U(AN @) Now let ye
(ANBYU(ANC)soeither ye ANBor ye AN C. In any case ye 4 and
yeB or yeC. Hence ye AN(BUC). Thus (ANBYU(ANC)< AN
"(BUC). Hence we have both AN(BUC)<(ANB)U(ANC) and
(ANBYyu (AN C)< AN (BU C) and consequently we have (1).

We also have another distributive law which dualizes (1) in the sense that it is
obtained from (1) by interchanging U and N:

2 AVUBNC)=(AUB)N(4UC).

It is left to the reader to draw a diagram for this law and carry out the proof.
Better still, the reader can show that (2) is a consequence of (1)—and that, by
symmetry, (1) is a consequence of (2). These two properties are sometimes called
De Morgan’s laws after the mathematician who first called attention to them.

Intersections and unions can be defined for an arbitrary set of subsets of a set
S. Let I be such a set of subsets (= subset of 2(S)). Then we define MNaer 4 =
{x| xeAforevery AinT}and Uy 4 — {x|xe A forsome AinT}. Ifis
finite, say, I' = {4,, 4,, ..., 4,} then we write also (., 4, or A, N A;N- .-
M A, for the intersection and we use a similar designation for the union. It is
easy to see that De Morgan’s laws carry over to arbitrary intersections and
unions.

0.2 THE CARTESIAN PRODUCT. SET. MAPS

The reader is undoubtedly aware of the central role of the concept of function in
mathematics and its applications. The case of interest in beginning calculus is
that of a real-valued function of a real variable. Here we have a subset of the real
line R; usually, an open or closed interval or the whole of R; and a rule which
associates with every element x of this subset a unique real number f(x). Associ-
ated with a function as thus ** defined” we have the graph in the two-dimensional
number spacedR® consisting of the points (x, f(x)). We soon realize that f is
determined by its graph and that the characteristic property of the graph is that



