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Preface

The form in which I have written ‘‘Linear approximation” seems to me
to be suited to the subject, and to the use of mathematicians, scientists, and
engineers.

Readers interested in the applications may wish to start with the illus-
trative examples and the statements of theorems. All readers are urged to
skip boldly and to sample where they will.

I am grateful to my wife and to many men and women for help and
teaching. In the words of David, Psalm 16, 6,

%Y PP nbna nx ovn°w13 *% 1501 o°an
The lines are fallen unto me in pleasant places;
yea, I have a goodly heritage.

ARTHUR SARD
July 21, 1962
QUEENS COLLEGE

THE City UNIVERSITY OF NEW YORK
FrusaiNeg, NEW YORK
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Introduction

Many approximations of integrals, derivatives, functions, or suns are
linear, and continuous relative to a suitable norm. The linearity and con-
tinuity provide a means to establish known properties of the approximations
and to discover other properties.

Design, analysis, and appraisal all are illuminated and advanced by the
theory in this book.

§ 1. Functionals, If a quantity e is a linear function on a three-dimen-
sional linear space X, that fact alone permits us to gain a complete know-
ledge of e. We may introduce coordinates

x = (a), 22, x3), rze X,
in X. Then the value of ¢ at z is
(2) e(x) = ala! + «?r? + o2’ reX,

where «l, a2, o® are appropriate numbers which characterize ¢ and which
can be calculated by putting x equal to

(3) (1,0,0), (0,1,0), (0,0,1)

successively in (2).

For an infinite dimensional space the generalization of the above remark
is interesting.

Suppose that X is a normedt linear space. By a functional F on X we
mean a map of X into the numbers N, where N will be either the reals R or
the complex numbers C. The set X* of linear continuous functionals on X
is known as the adjoint space. 'f

Fe X*

that is, if F is a linear continuous functional on X, then this fact alone tells
us much about F.

If X is finite dimensional, the dimension of X characterizes X*. This
case is like the three-dimensional one alluded to earlier. If X is infinite
dimensional, the dimension of X does not of itself characterize .X*.

For the most part we deal with spaces X of dimension Xy (alepho). For
some such spaces, the adjoint X* is w ell known and our knowledge includes
an explicit direct procedure for obtg s dard formula for an arbitrary
element of X*. This is import t%the't}le%ﬁ of approximation because

are in the index.
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remainders are often elements of X* for suitable X. If the standard for-
mula leads to sharp appraisals, it is particularly useful.

Consider Co(I), for example, the space of continuous functions on
I = {a £ s £ &} to R, with norm

(4) l#l ey = sup l2(s)], 2 Cod).

An arbitrary element F of Co(I)*, that is, an arbitrary linear continuous
functional F on Co(l), may be written

{5) Fr = J;x(s) af(s), relX,

where f is a suitable function of bounded variation on I. Furthermore f
may be calculated from the formula

lim Fo{¢,s) ift > «
(6) [y =9 _
0 ift £ «,
where {6},v = 1,2,..., is a standard sequence of continuous functions

which approach the Heaviside step function § monotonely (Theorem 3 : 34).F

To apply this theorem of F. Riesz’s to a particular functional F we need
only recognize F as an element of C¢(I)*, which is easily done by §3:8 or
otherwise, calculate f by (6) or its equivalent, and conclude that (5) is valid.
Note that (5) is the analogue of (2) and the use of (6) is the analogue of the
substitution of (3) in (2).

One may deduce from Riesz’s theorem the corresponding result for the
space Cy(I) of functions on I n-fold continuously differentiable, with norm

mzmc,,u) = max sup |x(s)], x € Cp(l),

t=0,1,---,n sel

where z; denotes the ith derivative of x (Theorem 3:39). The standard
form of an element F of Cy(l)* is

(7) Fx = 3 ciia) + f; x,(8) df(s), reCy(),

i<n

1 In our cross-references a number before a colon is a chapter number and a number
after a colon is the number of the object referred to within the designated chapter.
If no colon is present, the reference is to the numbered object in the current chapter.

Thus in Chapter 2, for example, (3: 4) would refer to item (4) of Chapter 3; (3: 4, 5)
would refer to items (4) and (5) of Chapter 3; and (6) would refer to item (6) of Chapter 2
itself. Theorem 7: 8 would refer to Theorem 8 of Chapter 7. Theorem 7: 8 is not
necessarily the 8th theorem in that chapter, but the 8th numbered object, which hap-
pens to be a theorem. Similarly §1: 2 is the section labeled 2 in Chapter 1. Chapter
numbers will appear in the captions of left-hand pages.

References to the bibliography are in square brackets, near the author’s name or
including his name. Thus [Newton 3] or . . . Newton . . . [3] would refer to the 3rd
work listed under Newton.
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where the constants ¢ and the function f of bounded variation are given in
(3: 40, 41) and a is an arbitrary fixed element of I. The relation (7) leads to
sharp appraisals of Fx, & € Cr(I), because the elements

xzola), x1(a), - -+, Tn-1(a); x, € Co(I),

that describe z are independent of one another: For any set 49, b1, . . ., bn-1
of numbers and any function y € Co(I), there is a function x € O, () such that

zi(a) = b, i< n;
xa(s) = y(s8), sel.

The funetion f in (7) is determined by the functional F. If fis absolutely
continuous, then

df(s) = fi(s) ds;

and the integral in (7) becomes an ordinary integral. Ordinary integrals
have the advantage of being appraisable by all the Holder inequalities
§1:21).

In actual practice the functional F is often given as a linear combination of
integrals. Then relations like (7) may be established by a transformation
of formulas. For functions of one variable, the powerful and elementary
Theorem 1: 8 states this fact. The theorem is due to Peano and dominates
the subject. The theorem provides a standard form (7) in which f is abso-
lutely continuous and a direct procedure for calculating the density fi, for
certain functionals F.

Every formula for a remainder in Steffensen’s useful book [1], for example,
can be deduced from Theorem 1:8. The theorem provides alternative
formulas also, which are useful and have been neglected.

There are illustrations in Chapter 1 and extensive applications in Chapter 2.

In the approximation of a given functional G, we often consider a family
o/ of functionals and put to ourselves the problem of choosing one functional
A € o/ to serve as the approximation of G. For each A4 €., there is a
remainder

Rx = Gx — Arx, ze X.

A procedure often followed is to choose 4 € &/ so that R vanish for poly-
nomials of as high degree, say n — 1, as possible. Such a ecriterion of choice
seems to me to be indirect. What it achieves is that Rz is expressible in
terms of the nth derivative x,, What we want is that Rx be as small as
possible in some sense for the set of functions = on which we will operate, or
that the appraisal of Rz that we use be as small as possible.

Various criteria of choice of 4 € &/ are discussed in § 2:1 and in Chapters
9, 10.

§ 8. Several variables. For spaces X of functions of a single real variable,
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our knowledge of the adjoint space X* is usually adequate. This is not the
case for spaces of functions of several variables.

Consider a normed space X of functions on a closed bounded region D
of the s, t-plane to the reals R.  For some such spaces a standard form of ele-
ments in X* and a direct procedure for finding sharp appraisals are not known.

An example is the space C3(D) of functions which have continuous first
partial derivatives on D, with norm

2l gapy = max [sup |2(s, t)], sup |21.0(s, ), sup [voals, t)]], ~ xeCHD),

where the suprema are taken for (s,t) € D. There is no known procedure
for calculating a standard form of an element F of C}{(D)*, even when D is
aninterval. We know that Fx may be written as a sum of Stieltjes integrals
on x, 21,0, Zo,1 ; but we do not know a direct way of obtaining such a formula
for an arbitrary F e C}(D)*. Nor, if we have such a formula, do we know
how to obtain effectively a sharp appraisal of Fz, x € C}(D). The difficulties
here are related to the fact that the derivatives x; o and x¢,1 are not inde-
pendent on D.

Thus it is important to diseover particular spaces X for which we can find
direct procedures of obtaining standard forms and sharp appraisals of
arbitrary elements of X*. Our spaces B, K, Z of Chapters 4, 5, 6, 7 are of
this sort.

The spaces B, K and the related spaces #*, S * have the following
properties :

(i) Elements of B*, K*, #*, or X4 * are readily recognizable (§§ 4: 80;
6: 13, 21, 47).

(ii) Remainders in approximation are often elements of suitable B*, K*,
B*, or A *.

(iii) Each element of B*, K*, #*, or /4 * may be written in a standard
form. There is an explicit direct procedure for obtaining that form and
sharp appraisals thereof.

Chapter 4 provides the elementary part of the theory. It is the counter-
part for functions of two variables of Chapter 1.

Chapter 5 discusses applications to integration, substitution (interpolation
or smoothing), and differentiation.

Chapter 6 provides the complete theory of the spaces B, K and their
adjoints. The functionals which are elements of B*, K* are considered
intrinsically; it is not required that such elements be given as sums of
Stieltjes integrals. The culmination of the chapter is Theorem 6: 58 which
gives a standard form for Fx in terms of ordinary integrals, when ¥ € K* and
xre B. It is Theorem 6: 58 which motivates the definition of the space K
and which shows that K is the proper companion of B.

The spaces B, K are defined in terms of a compact interval

I =1 x I Iy = {a £ 5 £ &}, ={f <ts B}
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of the s, t-plane; and an arbitrary fixed point (a, b) of I. The spaces B, K
consist of functions x on I for which certain specified partial derivatives xy, ;
are continuous on I, and other specified partial derivatives x;, j, with
8 = a, are continuous on I, and other specified partial derivatives z;, j,
with ¢ = b, are continuous on I;,. There is a great variety of spaces B and K
(§4:49; §6: 38).

The spaces B and K have a rectangular character which may appear to
give our theory a limited scope but which on the contrary is a source of
strength. Each condition that restricts a space X at the same time broadens
the adjoint space X*. Now our principal hypothesis in the first chapters is
that

FeK* and ze B.

The condition x € B is easily carried by functions that we encounter, as a
rule. Indeed x usually has more than enough continuous differentiability.
And the condition F € K*, because of the narrowness of K, is relatively
broad. The functional F need not have a rectangular character but may
depend entirely on an arbitrary subset of the interval I that enters in the
definition of B and K. Cf. the illustrations in §§5:2, 18, 26. Thus the
weight of our hypothesis falls on x rather than on 7.

Furthermore, and this point is compelling, the hypotheses of our theorems
are necessary as well as sufficient for the conclusions.

In Chapter 7, the theory is extended to spaces of functions of m variables.

Chapters 1-7 consider functions on compact intervals. Compactness
makes the formulas for masses and kernels simpler than they otherwise would
be (cf. Theorem 6: 9). This gain in simplicity is important in the theory of
approximation where the task to he done includes the calculation of masses
and kernels as means to obtain explicit formulas and sharp appraisals.

§ 9. General linear formulas. In the first part of the book functionals
are evaluated in terms of derivatives. It is natural to ask what objects, if
any, other than derivatives may be used. We give a complete answer to
this question for linear continuous operators, in{ Chapter 8.

By an operator ¥ we mean a map of a function space X into a space Y.
In many cases Y is itself a function space. If Y is the space N of numbers,
then the operator F is a functional.

The spaces that we consider are normed. Different norms and different
sorts of norms are useful in the theory of approximation. There are norms
based on suprema such as those in the spaces Cy, B, K ; and norms based on
averages (§ 9:1). There are norms based on the function itself, such as the
norm in Cy; and norms based on certain derivatives of the function, such as
the norm in C;. The norms in X and Y determine the open sets and the
meaning of continuity of operators.

T Chapter 8 does not depend on its predecessors.
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In approximation we often start with a preproblem and then construct a
precise problem which is an acceptable instance of the preproblem. If we
are interested in an operator (F) vaguely defined on a vague space (X) to a
vague space (Y), we replace these vague objects by precise ones F, X, Y.
Whenever possible we arrange our choice of F, X, ¥ so that F be continuous.
The wide choice of norms and of normed function spaces is very helpful here.
It is natural to require continuity of F because otherwise a small change in
input might induce a large change in output. But the meaning of smallness
is to an extent at our disposal.

What we seek is a problem which fits the preproblem and which allows
strong conclusions from relatively weak hypotheses.

Continuity is desirable and often attainable. Linearity is less universal.
We say that an operator F on X is linear if

Flax + by) = aFx + bFy
whenever
r,yeX; a,beN.
In this book we consider only linear operators. The hypothesis of linearity
is very rewarding, as will be seen. Furthermore the preproblem often per-
mits hypotheses of linearity, because derivatives, integrals, sums, and values
of a function all are linear.

Minimax approximation is an example of a nonlinear process. Nonlinear
theories tend to involve greater computational difficulties than do linear
theories.

In the study of linear continuous operators we often seek to describe one
operator in terms of another. Suppose that R is a linear continuous operator
on X to Y and that U is a linear continuous operator on X to all of X, where
X, X, Y are normed linear complete spaces. In order that there exist a
linear continuous operator @ on X to Y such that

(10) Rx = QUx, zeX,;
it is necessary and sufficient that
(11) Rx = 0 whenever Uz = 0, zxe X.

This is the quotient theorem of Chapter 8.

That the operator @ is continuous is important here. The relation (10)
implies the sharp appraisal
(12) | Rzly < |Q) Uzl zeX,
where ||@] is a finite number determined by ¢.

1t is striking that the simple condition (11) and the preliminary hypotheses
permit one to deduce the representation (10) and the appraisal (12).

The representations of elements of C% B*, K* and Z* of the earlier

chapters all are instances of (10). In Theorem 3: 39, for example, U is the
operator which assigns to = € (’, the ordered set
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z(a), z1(a), - - -, xp—1(a), and xz,€ CD(I)

In this case Ux is a set of » numbers and one function.

When studying an approximation in which the remainder is Rr, x € X, a
mathematician may review the variety of ways to construct operators U
and spaces X for which the hypotheses of the quotient theorem would be
valid. Thus U, instead of being a derivative or set of derivatives as in
earlier chapters, may be a specified linear combination of derivatives or sets
thereof or a difference or a specified linear combination of differences or
other things.

§ 13. The effect of error in input. We often wish to approximate
Gz, re X,

by
Ax + dx), x + dxe X,
where

X is a space of functions {or equivalence sets of functions)
on a space S;

Y is a space;

G is a given operator on X to ¥

A is an operator on X to Y.

We may say that z is the ideal input, z + 8x the actual input, 8z the error
in the input, Gz the desired output, and A(z + 3z) the actual output. The
error in the approximation is

(14) e =A(x + 3z) -~ Gz

and is an element of Y.

The theory of approximation is concerned with the calculation of
A(z + dz), the appraisal of e, and the choice of 4 € & when a family &7 of
admissible approximations is given.

It is sometimes advantageous to write

(15) e =eq + €y,

where
eq4 = Ax — Gux,
esz = A{x + 8x) — Ax.

We may call e4 the truncation error or error due to 4 and esz the error due
to 3x. We may put
R=G- A4,

Rr = —ey,

and study the operator R by the quotient theorem.
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If A is linear, then
Cax = AS:I}

and es; is independent of x.

The above decomposition of e into e4 and e;; may be useful when our
knowledge or hypotheses about x and 8x are of different sorts. For example,
we may know that 8z is small in one sense and that Ux is small in another
sense, for suitable U.

§ 16. The use of probability. In the problem of the preceding section
more than one x and one 3z enter. KEither the operator 4 is to be used
repeatedly on different inputs or, if 4 is to be used only once, we nonetheless
do not know precisely what 2 and 32 will be and we must provide for a
number of possibilities.

There are two ways of describing the multiplicity of inputs. For brevity
let us consider the input . Our comments will apply similarly to the input
dx.

We may say that z is an arbitrary element of a specified set M C X and
we may treat all elements of M as equally important. Alternatively we may
introduce a probability to indicate the anticipated importance of different
re X.

Each element of X is a function on S. We may introduce a probability
as follows. Let Q be a space and let p be a probability defined on Q.
Assume that there is given a function z on § x € and that, for each fixed
w € Q) with null exceptions,

r,e X

and x,, is a possible ideal input of § 13 above, where z,, is the function on §
obtained by fixing w in 2(s, w), s €S, w € Q. Assume further that

(1)

is the probability that the ideal input of § 13 will be z,, with w € (21, where
Q; is an arbitrary measurable subset of Q (§§ 9: 174, 175). Thus p(;) is
a measure of the anticipated frequency of occurrence of inputs x,, with w € ;.
Alternatively p(Q:) is a measure of the anticipated importance of such inputs.
Since x is a function on S x £, z is now a stochastic process.

Similarly 8r may be a stochastic process and the same number p({2;) may
be the probability that the input error of § 13 will be 8z, with w € Q;.

The space Q and the probability p may be simple or not. In many pre-
problems it is natural to suppose that an appropriate Q and p exist. If p
is not known we may attempt to estimate p by some statistical technique.
Known and future statistical theories of stochastic processes may afford
effective methods of estimating p and x or 8z (§§ 9: 175, 304). Even without
a technique of statistical estimation we may assume that p and x or dz are of



