Graded Problems
in
Computer Science

Andrew D. McGettrick

Peter D. Smith

Graded Problems
in
Computer Science

'Andrew D. McGettrick

University of Strathclyde
Glasgow, Scotland

Peter D. Smith

California State University
Northridge, California, U.S.A.

A
vv

ADDISON-WESLEY PUBLISHING COMPANY

London * Reading, Massachusetts - Menlo Park, California * Amsterdam
Dcn Mills, Ontario © Manila - Singapore * Sydney * Tokyo

To Peter James and
Peter, Bobby, Kate and Andrew

©1983 Addison-Wesley Publishers Limited

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form orby any means, electronic, mechanical,
photocopying, recording or otherwise, without prior written permission of the
publisher.

Set by the author in elite-12 using NROFF, the UNIX text-processing system, at the
University of Strathclyde, Glasgow.

Cover design by Alan Rudge.
Printed in Finland by Wemer Soderstrom Osakeyhtid, Member of Finnprint.

British Library Cataloguing in Publication Data
Greded problems in computer science
McGettrick, Andrew D.

1. Electronic data processing — Problems, exercises,

etc.
I. Title II. Smith, P.D. =
001.6'4 QA76 R

4.

ISBN 0-201-13787-8 }

Library of Congress Cataloging in Publication Data
McGettrick, Andrew D.. 1944~
Graded problems in computer science.

Bibliography: p.

Includes index.

1. Electronic digital computers-Programming--
Problems, exercises, étc. 1. Smith, P.D. (Peter
DeCost]},

1941- . II. Title.
QA76.6.M3987 1983 001.64'076 82-11671
ISBN 0-201-13787-9

ABCDEF 89876543

Preface

The proper teaching of programming is a topic which 1is
of concern to all who are involved with computing. Yet
both introductory and advanced programming courses tend
to. suffer from certain rather severe deficiences.

It frequently happens that the teaching of a
programming language and the teaching of programming
itself are so intertwined that they become confused.
The reason for this s, of course, perfectly
understandable: to write programs that have to be
executed it 1s necessary to use some programming
language. Another criticism that can ‘be levelled at
many courses and indeed many texts is that they are
designed in such a way that they incorporate clever
tricks which show the abilities of the teacher to good
effect but which can be confusing and offputting to the
learner. T

Our motivation for writing this book was to produce a
set of carefully graded programming exercises which
gradually increase in difficulty and complexity. Within
each chapter the earlier exercises should be of such a
standard that everyone should be able to solve them. It
is hoped that the later exercises will tax even the
better students. The problems and the treatment are
suitable for all those involved in their first two years
of computing. We would like to think that the text
would naturally accompany any first and many second
courses on programming. Only such knowledge as 1is
commonly assumed in first year college or university
courses is assumed in this book.

This book 1is basically about programming. We have
tried to make the material independent of any particular
programming language. Each chapter and each sgection
contain explanations about how to write programs but
only informal descriptions of programs are provided.
Throughout we have tried to adhere to (what would
normally be regarded as) the elements of good
programming practice. Since the difficulty, the
complexity and the size of programs increase as more
programming language constructs emerge, it becomes
desirable to introduce exercises which might be viewed

v

vi PREFACE

as student projects. Yet it is sensible to do this only’
when programmers have at their disposal the means of

properly structuring their programs. Although they are

not identified as such, exercises which could be

regarded as projects start to appear after the

introduction of subprograms such as procedures and
functions.

In preparing the material for this book one important
matter had to be given careful consideration. People
may learn to program either in a batch environment or in
an interactive environment; the latter is increasing in
popularity with the introduction of relatively cheap
microprocessors. Should interactive programs be
included? Should the examples we provide be suitable for
both environments? To cover as wide a spectrum of
interest as possible we introduced a special chapter -on
interaction (which can be omitted if the environment so
dictates); the examples in the remaining chapters can be
run in both interactive and batch environments.

Unfortunately it has been necessary to limit the
number of topics and the number of areas of programming
that could be covered in the book. There is 1little or
no wmention of problems involving interrupts, parallel
processing, graphics, and so on. Even the more
interesting aspects of compiling techniques, operating
systems and general systems software have had to be
omittede We hope that the few examples that do exist
whet the appetite of the interested reader.

Finally we are aware of the duty to record our debt of
gratitude to those who have helped in the preparation of
the book. This is extremely difficult since similar
questions and problems have occurred in several places;
the origins of most problems are by no means clear.
Therefore 1lest we unwittingly cause offence, we shall
refrain from mentioning any names. However, special
mention should be made of the help provided by Dr. Robin
Hunter and Mr.Ray Welland and other colleagues at the

University of Strathclyde in Glasgow and. California
State University at Northridge.

October 1982 A.D.McG. and P.D.S.

Contents

Preface vii
Chapter 1 Straight line programs 1
1.1 The nature of programming languages 1
1.2 Abstraction 2
1.3 Simple programs 4
1.4 Specificaticn and testing 6
1.5 Miscellaneous exercises 8
Chapter 2 Conditionals 15
2.1 Conditional statements 15
2.2 Case statements 17
2.3 Remarks about testing 19
2.4 Miscellaneous exercises 19
Chapter 3 Loops 26
3.1 Repeating a process several times 26
3.2 Control variables 32
3.3 While loops and iteration 38
3.4 Other variations 11
3.5 Nested loops 44
3.6 Miscellaneous exercises 48
Chapter 4 Subprograms 73
4.1 Functions 74
4.2 Subroutines or procedures) 79
4.3 Simple recursion . 82
4.4 Divide-and-conquer) 84
4.5 Stepwise refinement 86
4.6 Misceilaneous exercises 8¢
Chapter 3 Arrays 95
5.1 Scanning arrays 96
5.2 Frequency counts 102
5.3 String processing 105
5.4 Sorting and related topics 108
5.5 Multi-dimensional arrays 113
5.6 Miscellaneous exercises 117

1id

iv

Chapter 6

6.1
6.2
6.3
6.4
8.5
8.6

Chapter 7

71
7.2
7.3
7.4
7.5
7.6
7.7

Chapter 8

: 8.1
8.2

8.3

8.4

8.5

8.6

Chapter 9

9.1
9.2
8.3
9.4
9.5
9.6
9.7

Chapter 10

101
10.2
10.3
10.4
10.5

Records and structures

Sfinple records

Type declarations and operators
Variants or unions

Simple linked storage

More complex data structures
Miscellaneous exercises

Modules and packages

Groups of items

Simple packages

Encapsulating data types

Own variables and the use of globals
Abstract data types

Note on generics

Miscellaneous exercises

More advanced programming
Stepwise refinement
Divide-and-conquer revisited
Backiracking

Recursive descent

Pattern matching
Miscellaneous exercises

Files

Serial files

Jackson design method
External sorting
Sequential files

Direct access files
Indexed sequential files
Miscellaneous exercises

Interactive programming
Simple interaction
Computer-assisted learning
Simulation

Game playing .
Miscellaneous exercises

References and suggestions fﬁr further reading

. Index

CONTENTS

162

162
164
166
168
172
175

189

180
191
192
194
199
200
201

207

207
208
212
215
221
225

242

243
245
251
252
254
258
261

279

279
281

287

305

308

1 l Straight line programs

This book is about programming. Its aim is to provide a
set of programming problems which cover a wide spectrum
of interest and are carefully graded in difficulty.
Within each section the earlier problems should be
within the grasp of everyone. The more difficult
problems should challenge even the more gifted.
It is intended that this text should be used in
~conjunction with a book or course on some programming
language. It 1s not intended that all the resulting
programs should be entered into a computer and executed.
Indeed such a practice should be discouraged. Certainly
it is necessary to try to execute some of the programs
but only a relatively small proportion, perhaps 5 to 10

per cent. The aim is to provide practice in thinking,
not typing!

1.1 The nature of programming languages

To focus attention on- programming as opposed to
programming languages we have decided to make the
contents of this book .s language independent as
possible. Yet it is important to comment on the sorts
of programming language facilities we assume at each
stage. TFortunately there is a set of commonly used
languages which includes (in alphabetical order) Ada,
Algol 60, Algol W, Algol 68, Basic, Cobol, Fortran 66,
Fortran 77, Pascal and PL/I. These tend to have similar
facilities for simple programming and so it is possible
to make some progress.

Programming languages will typically have statements,
instructions or facilities whereby it is possible to

*introduce identifiers which can be used to denote

variables and possibly constants of a particular kind
(and perhaps within some range) ‘

2 GRADED PROBLEMS

*remember or store within variables certain values or
the results of calculations :

*perform calculations such as the evaluation of
arithmetic or logical expressions

*read information from input files or a reader and send

information to output files, a visual display unit or
a printer

The more common programming languages all possess such
facilities. ' o

" Typically simple variables and, if they are present,
constants can only be of certain specified types such as
integers, reals, characters, Booleans and possibly
enumeration types. Where appropriate, declarations are
usually used to introduce variables, constants, etc. and
associate with them a type (and perhaps range).

The kind of arithmetic calculation commonly allowed
includes the addition, subtraction, multiplication and
division of integers and reals. There is usually also
some means of finding the quotient and remainder when
two integers are divided and a means of raising a number
to a power. Apart from these there are usually standard
functions or equivalent facilities for finding square
roots (of. non-negative numbers), absolute walues and
signs, and for applying trigonometric functions,
logarithmic functions, exponential functions and so on.

The input of information is generally controlled by
READ, INPUT or GET statements and the output by WRITE,
OUTPUT or PUT statements or the equivalent.

1.2 Abstraction

When a programmer has to write a program for even a very
simple task there are usually various decisions he will
have -to take. He will be given a problem phrased in
terms of familiar concepts such as mortgage rates,
account .numbers, salaries, number of hours worked,
names, addresses, dates of birth, examination marks,
train times and so on. One of the important tasks a
programmer has is to represent each such item by a

STRAIGHT LINE PROGRAMS 3

corresponding object in a program in the programming
language. This object will typically be represented by
the identifier of a variable of a particular type. how
should the programmer select the identifier and type?

In choosing identifiers a programmer should have
regard to the way in which the corresponding variable is
to be used in the program. The identifier should be easy
to remember and it should remind the programmer of the
role it is to play and the item it represents in the
eventual program. Long identifiers are more descriptive
but are cumbersome and adversely affect the speed of
thought and the speed at which the program can be
written - a consideration which tends to encourage' the
most important property of correctness. On the other
hand, short identifiers are easy to manipulate but are
less descriptive. Usually some compromise is possible.
At any point in a program the number of concepts under
consideration should be severely limited in the
interests of simplicity - the number of concepts is
usually closely related to the number of variables.
There 1is therefore wusually little need for- long
identifiers. Note that the rules of the programming.
language itself, in the case of for example BASIC or
FORTRAN, may force the programmer to adopt certain
conventions.

In deciding on the precise representation of some item
within a program a programmer must be able to focus
attention on the relevant aspects of that item. He must
be able to abstract the relevant qualities. In some
cases this 1is straightforward. If for example the
problem specification refers to measurements of some
kind then it is natural to expect that these might be
represented as real numbers held in real wvariables or
perhaps as integers held in integer variables. Consider
however a bank account number. Should this be treated as
an integer or as a string of characters? The answer
comes from observing the kinds of operation which the

programming language will permit on integers and strings
of characters. Typically

*integers can be added, subtracted, hultiplied, divi~ed
and so on, as well as read, printed and compared

*strings of characters can be read and ptinéed ‘and

4 GRADED PROBLEMS

examined in limited kinds of ways, usually comparison
of two strings is easy.

Other characteristics which might be important are the
amount of space taken by a representation (integers are
normally more compact), and any size 1limitations
(integers are typically less than about ten decimal
digits). It is not usually desirable or sensible to add
or multiply account numbers. For this reason it is
usually most appropriate to represent an account number
as a string of characters. Note that the decision has
been based both on the type, on properties such as range
limitations and storage requirements and on the
operations which can be performed on that type. Illegal
operations (for example attempts to multiply account
numbers held as character strings) will normally be
detected and a message output to the programmer = no
attempt will be made to perform them.

Note .the crucial role played by types. Illegal
operations can be detected and highlighted by a compiler
8o that the programmer can correct them. A somewhat
similar role is played by ranges when they appear. But
generally errors caused by range violation appear when a
program 1is actually being executed. A programmer must
strongly resist the temptation to alter ranges merely to
accommodate particular values. Usually these errors are
a symptom of some more fundamental error perhaps caused
by a misunderstanding of some kind; this

more
fundamental error is what should be remedied.

1.3 Simple programs

For most simple programs of the kind we»shalllencounter

in this - chapter the structure of the program is
straightforward:

*introduce identifiers, initialise, etc.
*read in information

*perform calculations.

*print out. results-

Programs such as these are called straight 1line

STRAIGHT LINE PROGRAMS 5

programs; execution proceeds from the start and
progresses step by step to the end of the program. No
concept of branching, repetition or looping is present.

Example 1.3.1 Circumference and area of a circle

Given as data the radius of a circle, write a program
which prints out the circumference and area of that
circle. The program might take the following form

introduce the constant PI = 3.14159265

introduce identifiers R, CIRCUM, AREA

read value and store in R i

evaluate 2 x P£ x R and store the result in CIRCUM
evaluate PI x R” and store the result in AREA

print CIRCUM and AREA

The notation we have used here is informal but has the
merit of being independent of any particular programming
language. The task of translating the above into a
particular programming language ought to. be completely
straightforward. _

In the example above we have used capital letters for
the identifiers of variables and will continue to do so
but from now on we will omit references to the
introduction of identifiers; the appearance of an
identifier in an example should convey sufficient
information.

Some advice should be given about the nature of input
and output. Let us concentrate for the moment on
output. Really the programmer ought to ask: for whom or
for what purpose is the program being written? There are
two situations worth mentioning. :

If output 1is for human consumption and for reading
then the output should be self explanatory and should
usually contain, in some form, information about the
input data it processed. This usually means that there
should be text describing or explaining the significance
of the various pieces of information in the output. This
is the usual position with elementary programming and
our examples will tend to reflect this view.

Sometimes programs provide output which- has merely to
be read and absorbed by another program. In this case
explanatory text is often unnecessary and even wasteful.

6 GRADED PROBLEMS

All that is necessary is a set of results in stark form.
However, we do stress that this is not the wusual
situation in real life or in this book.

le4 Specification and testing

Associated with every problem there 1is wusually an
informal description of that problem. From this the
programmer must extract a more formal program
specification - an exact interpretation of what his
program must accomplish. It 1is vital that such
descriptions should be clear, unambiguous and accurate.
Further 1t should be free of any mention of the
particular variables, constants, etc. in the program. °
The format of the data should be clearly defined as
should the nature of the resulting output. In
particular the range of values with which the program
deals should be clearly defined. In producing
specifications of programs a programmer should pay
particular attention to the use of words such as
positive, negative, non-negative, and so on; he should be
careful about including units of measurement where
necessary; where numeric data should be supplied to a
particular accuracy, this should be specified; and so
on. :

There is a difficulty associated with specifications
and this arises from the nature of high-level
programming languages. Programs - writtem in Ada,
Fortran, Pascal, etc. are intended to be portable in the
sense that a program which runs on one machine should ,
run with little or no eéxtra effort on another machine of
a different type. Now the range of numbers that can be
handled may vary from machine to machine; comnsequently
the specification details may also vary.

To-overcome the need to give different specifications
for different machines it 1is customary to write
specifications in a way that is independent ' of
particular machine limitations. A reader should then
understand that if a program is run, and there are no
storage violations or whatever, the result will be as
predicted in the specification.

We illustrate a typical specification by describing

STRAIGHT LINE PROGRAMS 7

the form of the input and the nature of the output
expected in Example 1.3.1.

input:one non-negative number which may be presented
either as an integer or as a real number
possibly preceded by a + sign; the number will
be assumed to represent units of some kind.

output:two signed real numbers separated by a space.
The input will be interpreted as the radius of a
circle; the first nunber produced- represents the
circumference of the circle (in the assumed
units) and the second represents its area (in
square units). Both results are accurate to 8
decimal places.

Note that the statement of what output is produced
assumes that the input is in the expected form. Should
the input violate these rules, the specification says
nothing whatsoever about the behaviour of the program.
Basically the above can be understood by a client who
can immediately determine how to use the program and can
learn its effect; running the program should cause hin
no surprise.

We have seen that the program specification is
extracted from the initial problem specification. From
this it should also be clear that the final program
should work for certain sets of input. Indeed sets of
data to test the eventual program can be derived at the
same time as the formal program specification is derived
- before the program is even written.. The testing stage
involves running the program with certain kinds of data
in an attempt to discover whether the program does what
was intended. The choosing of test data is not always
straightforward. For the kinds of program discussed in
this chapter, tests should include typical sets of data
but also peculiar or unlikely situations. In particular
boundary conditions should always be tested, e.g. if an
integer represents an age (at most 100) then tests
should include typical ages that include both the ages 0
and 100.

It is important to be aware of the fact that there are
severe limitations to the process of program testing.
Tests are not a guarantee that a program is accurate;

8 GRADED PROBLEMS

they indicate the presence of errors, not their absence.
Another activity, program proving or program veri-
fication, will demonstrate the latter. A study of this
topic 1is beyond the scope of this book although many of
its lessons are incorporated in a great deal c¢f the
material that is provided.

1.5 Miscellaneous exercises

In the exercises below the programmer should initiélly
supply detailed program specifications for all the

resulting programs. Appropriate testing should also be
.undertaken.

1 Code the solution of example 1.3.1 in a programming
language of your choice.

2 Design and run a program to convert a measurement in
metres and centimetres into centimetres.

3 Write a program to read three numbers and output them
in reverse order.

4 Write a program which inputs a temperature.in degrees
-Centigrade and outputs the corresponding temperature
on the Fahrenheit scale.

5 Write a program which calculates the value.of Lsin(x)

where x 1is expressed in degrees. The data is Just
the value of Xe

6 A rational number is usually written in the form P/Q
where P and Q are integers. Write a program which
reads a rational number in the form of the pair of
integers corresponding to P and Q and outputs the

equivalent real number. ' ')

7 At the beginning of a jourmey the reading on a car's
odometer is S kilometres and the fuel tank is full.
After the journey the reading is F kilometres and it

10

11

12

13

STRAIGHT LINE PROGRAMS 9

takes L litres to fill the tank.

Write a program which reads values of S,F, and L
and outputs the rate of fuel consumption rounded to
the nearest integer followed by the actual rate
correct to four decimal places.

Write a program which reads a positive integer N and
outputs the sum of the first N integers.

Write a program which reads a positive integer N and
outputs the sum of the first N squares, that is
1+4+. ® 000 '-'.NXN'

Show how to convert automatically' from centimetres

into metres and cextimetres by writing a suitable
program. :

In the "old days" in Britain measurements used to be
expressed in yards, feet and inches (12 inches = 1
foot, 3 feet = 1 yard). Show how to convert from
inches into yards, feet and inches.

A local council levies rates on a house as follows.
The total liability is made up of a water tax and a
dwelling house tax. These are computed by multiplying
the surveyed rateable value of the property (R) by
the water rate (W) and the house rate (H)
regspectively. Householders are given a choice of two
methods of payment:

(1) 10 monthly payments
(11) 2 six-monthly payments

In the latter case, a discount of 5% is given.

Write a program which reads R, W and H and outputs
an annotated Rates Notice.

If an amount of money A earns RZ interest over a

period of P years then at the end of that time the
sum will be

T =Ax ((100 +R) / 100) T

Write a program which inputs A,R and P and outputs T,

10

14

15

16

17

GRADED PROBLEMS

An object falls to the ground from a height h in time
t given by

= (2h/g)0'5

where g the gravitational constant (= 9,81

metres/sec”).

(a) Write a program which computes the time it would
take an apple to hit Newton on the head assuming
he was 1.37 metres high (when sitting) and the
apple was on a branch 6.7 metres high.

(b) At the time of writing, a typical computer takes
a microsecond to obey an instruction. Write a
program which outputs the number of instructions
that it can obey during the time it takes for an

egg to drop to the floor from a table 1 metre
high.

In order to pay off in N years a mortgage of $P on
which interest is charged at an annual rate of R% and
computed annually, $A must be repaid every year where

A = Px (1 + r)N X T
(1 + r)N -

and r = R/100. Write a program which reads P,N and
R and outputs A. '

Write a program which inputs 3 quantities T,N,R and
outputs the monthly repayments on a loan of $T over a
period of N years at a fixed interest rate of RY when

the interest is computed only once (at the beginning
of - the loan periad).

A room is B metres wide, L metres long and H metres
high. It has a door (Bl metres wide and Hl metres
high) in one wall and a window (B2 métres wide and H2
metres high) in another. Wallpaper is available in
rolls M metres long and F wmetres wide. Write a
program which reads values for B, L, H, Bl, Hl, B2,

H2, M and F and calculates how many rolls of

wallpaper would be needed to paper the walls assuming
n0 waste.

