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Preface

The aim of this book is to give an introduction to that part of
mathematics which has come to be known as analysis. It is intended to be
read by those who have studied calculus from the point of viéw of its
applications, and are now ready for a deeper analysis of the ideas
involved. Prerehuisites are a working knowledge of the techniques of
calculus, and an ability to manipulate logical arguments. The book is
envisaged as suitable for students of mathematics in their first year at
university.

Two conflicting objectives are present in every area of mathematics.
On the one hand there is the desire to understand the underlying
principles. On the other hand there is the need to find answers to
practical problems. In its early stages a particular piece of mathematics
evolves as a tool for solving certain types of problem. Full understanding
comes later. Euclid provided the definitive format for proper understand-
ing of an area of mathematics. The fundamental concepts are those of a
theorem and a proof. Since a proof involves logical deduction of one
theorem from others it is necessary to start with theorems which are
assumed without proof. Such unproved theorems are called axioms which
are as few and as simple as possible. Having decided what one’s axioms
are to be, one is then committed to arguing rigorously from these axioms
and no others. Euclid applied this rationale to geometry. Mathematical
analysis 1s the application of this rationale to the infinitesimal calculus of
Newton and Leibnitz.

Since we ‘aim only to introduce analysis, rather than give a formal
treatise on the subject, we have made no attempt at complete coverage.
We have concentrated on explaining the basic ideas only, having in mind
a student who will read this subject among others, who wants quick
access to the essentials, and wishes to avoid being held up on abstruse
ramifications. At the same time, we hope that those students who intend
to specialize in mathematics, and analysis in particular, will find this book
an adequate preparation for any later study they may undertake in this
area.

A large number of exercises have been included. Those in the body of
the text are straightforward and are meant to confirm an idea that has
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just been introduced, and no more than that. Those at the end of the
chapters are more challenging and are meant to flesh out the material of
the particular chapter. A few are results which are to be used later, but
were considered unsuitable for inclusion in the main text.

There are a few departures from the standard presentation of analysis
at this level. Most notable among these are the emphasis on sequential
convergence as the definitive limiting process, and the use of sequences
to prove the fundamental theorems about continuous functions. The
elementary properties of the exponential and trigonometric functions are
obtained without calculus. We give a proof of the Riemann integrability
of a continuous function which avoids mention of uniform continuity.
Continuity and differentiability of power series are proved as special
cases of Weierstrassian theorems about infinite series of functions.

I would like to thank Anthony Watkinson for originally inviting me to
write the book, Nicholas Browne for comments from the point of view of
English sixth formers, Egbert Dettweiler and Brian Hartley for com-
ments derived from using some of the material in teaching undergradu-
ates, Alan Best, David Brannan, and Phil Rippon for discussions about
the sequential approach to continuous functions, Beryl Sweeney for her
patience and perseverance in typing the manuscript, and finally my wife
Suzanne for her unfailing support and encouragement throughout the
whole project.

Manchester J. B. R.
21 December 1984
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1
The real numbers

Our intention is to apply the rigorous spirit of Euclidean geometry
to the subject material of the infinitesimal calculus. We shall
postulate a small number of self-evident axioms and then deduce
the whole subject logically from these axioms.

Since we shall be dealing with real numbers throughout, we shall
present the axioms as a list of properties which we shall assume the
real numbers to have. We do not wish to be too pedantic about this.
Many properties are so utterly self-evident as to hardly need
mentioning. We shall pay particular attention to those properties
which may not be quite so familiar to a student embarking on a
course in mathematical analysis for the first time.

To this end, we shall take all the arithmetical properties of real
numbers, such as are concerned with addition, subtraction, multi-
plication, and division, totally for granted. We shall assume also
that the integers and the rational numbers (fractions) are known
and that it is unnecessary to define them.

We shall be more careful when it comes to inequalities. We shall
spell out the axioms for inequalities in detail, and encourage the
student at an early stage to obtain as much facility with inequalities
as he or she can. This is because we believe that the manipulation of
inequalities is at the root of analysis, and that success in analysis is
not easy until confidence with inequalities is achieved.

We shall think of the real numbers as the values any continuously
varying quantity may take, e.g. mass, length, time, temperature.
The values may be positive or negative, and arbitrarily large either
way. We shall keep in mind a geometrical picture of the real
numbers as laid out along a line called the real line which we can
imagine as calibrated with the integers as shown below.

It might be thought that one can adequately describe all the
numbers which appear between integer points as rational numbers
with suitably large denominators. It turns out that this is not so. In
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fact, the real number V2 cannot be represented as a rational
number. This can be easily demonstrated as follows.

Suppose there were integers m, n such that m?/n?=2. We can
clearly assume that m, n have no common factor. Multiplying up,
we have m? = 2n?, from which it follows that m must be even, i.e.
m = 2p for some integer p. Substituting for m, we obtain 4p2 = 2n?
which, on cancellation, gives 2p® = n?. However, this implies that »n
is even, and therefore m, n have the common factor 2, which is a
contradiction. Hence V2 must be irrational.

Exercise

Show V3, ¥4 are irrational by a similar method. a

As we have already said, we shall assume all the arithmetical
properties of real numbers without further ado. We shall also
assume the principle of mathematical induction. We give a brief
description in case the reader is unfamiliar with it.

Suppose we wish to prove a proposition P(n), with a variable n,
is true for all n =1, 2, 3, ... running through the positive integers.
Then it is sufficient to prove that P(1) is true, and that, for each
n=1,23,..., P(n) true implies P(n + 1) true.

For example, let P(n) be the proposition that the sum of the first
n positive integers is 3n(n +1). P(1) is clearly true, and, if we
assume P(n) is true for any particular n, then we can deduce
P(n + 1) is true for this n, since

14243+---+n+(n+)=in(n+1)+(n+1)
=@Gn+1)(n+1)
=i(n+1)(n+2).

Mathematical induction therefore enables us to conclude that P(n)
is true for all positive integers n.

Having disposed of the arithmetical aspects of the real numbers in
cavalier fashion, we shall now by contrast concentrate on in-
equalities in depth.

The real numbers have a natural order along the line. Relative
position in the order is expressed by saying one real number is less
than or greater than another. We shall use the notation < for less
than, and > for greater than, e.g. 2<3, 5>1. Expressions
involving < or > are called inequalities. Inequalities have their
own arithmetic which is subject to certain laws in the same way as
ordinary arithmetic is. For example, we have the following.
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Law of addition

If @ < b, then, for any ¢, we have
a+c<b+ec. O

An inescapable consequence of the law of addition is that
inequalities for negative numbers may appear at first sight to be the
wrong way round. For example, if we start with the inequality 1 <2,
and subtract 3 from both sides (case ¢ = —3), we get —2 < —1. This
is, however, consistent with the approach of saying x <y if x lies to
the left of y on the real line.

—

X ¥

Law of multiplication

If a <b, then, for any ¢ >0, we have

ac <bc,
but, if ¢ <0, we have

ac > bc. a

In words, multiplication of both sides of an inequality by a

positive number ¢ > 0 preserves the inequality, whilst multiplication
by a negative number ¢ <0 reverses the inequality. For example, we
have 1 <2; therefore, multiplying by 3, we get 3 <6, or, dividing by
3 (case ¢ =1), we get <3, but, if we wish to multiply by —3, we
must reverse the inequality and write —3 > —6.

There are two other laws which may appear obvious but are none
the less important for that.

Trichotomy law

For any two real numbers 4, b one and only one of the three
possibilities ¢ < b, a = b, a > b must occur. ]

Transitive law

Ifa<band b <c, thena<ec. O

It follows from 1.4 that, for example, if a#b (a is not greater than
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1.6

1.7

1.8

b), then either a <b or a=b, i.e. a is less than or equal to b, and
we write a < b. Similarly, if a¥b, then we must have a = b.

The transitive law 1.5 can be extended to any finite number of
terms. For example, if a<b, b<c, c<d, d<e, then a<e. A
standard technique for proving an inequality a<e is to find
intervening points b, ¢, d for which the above chain of inequalities is
true.

We shall now illustrate the use of the laws of inequalities just
given by solving inequalities, which is analogous to solving equa-
tions, and proving inequalities, which is analogous to proving
identities. The rules of course are rather different and do not always
lead to the result one might expect. It is essential, however, to
abide by the rules at all times. Every step in an argument must be
justifiable by reference to one of the four laws given above.

Worked example
Solve the inequality
x+1<2x+3.
Subtracting 1 from both sides gives
x<2x +2.
Subtracting 2x from both sides gives
—x <2

Multiplying both sides by —1 gives

x> =2.
This is the answer. [
Exercise
Solve
3x-5 - 2x+5 0
7 6

Another worked example

Solve

x2—8x +12<0.
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Factorize. We get
(x —6)(x —2) <.

Therefore x — 6, x —2 must be of opposite sign. Either x —6<0
and x —2>0, which gives x<6 and x>2, i.e. 2<x<6, or
x—6>0 and x —2<0, which gives x>6 and x <2, which is
impossible. So the answer is 2 <x <6.

Complete the square. We get
(x—4)y—4<0.
Adding 4 to both sides gives
(x—4)? <4,
This inequality can only be satisfied if
—2<x—-4<2,
which, on adding 4 throughout, gives
2<x<6. O

It might be asked how the second argument is justified from the
laws of inequality. The argument certainly appeals to common
sense, and many might feel this to be sufficient. One has to admit,
however, that the reliability of one’s common sense depends very
much upon the extent of one’s experience.

The assumption we have made in this instance is that x2<a? is
equivalent to —a <x <. This can easily be verified from the graph
of y = x? (Fig. 1.1).

A rigorous justification from the laws of inequality might go like
this. If 0 <x <a, then multiplying by x gives x2 < ax, and multiply-
ing by a gives ax <a? and therefore, by the transitive law, x2 < g2

a ==

Fig. 1.1
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The same argument shows that, if x >a >0, then x2>g? A similar
argument shows that —a <x <0 implies x> <a? and that x <—a <
0 implies x2>a>. This has shown that, if —a <x <a, then x*><a?,
whilst, if x < —a or x > a, then x>>a? The equivalence of x*<a?
and —a <x <a now follows from the trichotomy law.

1.9 Exercise
Solve

x>+x—6>0. a

Proving inequalities can be a good deal less straightforward.
Many inequalities depend on the fact that a®>=0 for all real a. For
example, we have the following.

1.10 Worked example

Prove the inequality

is true for all real q, b.
Multiplying both sides by 4 gives

(a + b)*=4ab.
Subtracting 4ab from both sides gives

(a+b)>—4dab =0,

ie.

(a—=b)=0,
which is true, therefore the original inequality is true, since the
argument is reversible. a

1.11 Exercise

Prove
(ad — bc)* < (a*+ b?)(c2 + d?)
for all real a, b, ¢, d. O

The transitive law may also come into play as in the following.
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1.12 Worked example: Bernoulli's inequality

Prove
A4+x)"=1+nx

for all real x > —1 and all positive integers n.

We argue by induction on n. The inequality clearly holds for
n =1, in fact is equality for all x. Suppose the inequality is true for a
particular n. We shall show this implies it is also true for n + 1. In

fact,
(I+x)y*'=0+x)"(1+x)

=(1+nx)(1+x),
since 1 +x >0 on account of the fact that x > —1,
=1+ (n+1)x +nx?
Z1+(n+1x,
since nx?= (. Therefore, by the transitive law, we have
I+xy*l=14+(n+1)x
as required. g
Bernoulli’s inequality is of course much easier to prove if we

assume x =0. In fact, we have immediately, from the binomial
theorem,

(I+x)"=1+nx+in(n—Dx2+-- . +x»
=1+nx

since all the other terms are =0. Unfortunately this proof fails for
-1 <x<0.

1.13 Exercise

Hint

Prove 2" = n? for all n = 4. O

Using induction and the transitive law, the problem boils down to
showing 2n2=(n +1)> for all n=4. This can either be proved
directly (as in 1.8) or by taking x =—1/n, n=2 in Bernoulli’s
inequality. a

An important piece of notation which will be used extensively
throughout this book is the so-called modulus or absolute value of X,
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AY
y=
0 X

Fig. 1.2
denoted by |x|, and defined as follows.

x| =x(x=0),

= —x(x <0).

For example |~2| =2, |0] = 0 etc. The graph of y = |x| is as shown in

Fig. 1.2.

Observe that |x|=0 for every x. Also that |x|=Vx? (positive
square root) and hence e.g. |xy| = |x| |y| for all x, y.

The interaction between modulus and addition is more subtle,
and is embodied in an inequality which is important enough to be
given the status of a theorem.

1.14 Theorem

Proof

For all real x, y we have

e+ yl<lxl +yl. O

Squaring both sides gives
ke +yIP < (x| + 1y )2,
which, on expanding and observing that |x|? = x2, becomes
X+ 2y +y2<x2+2 x| |y| + 2,

which, on cancelling and using |xy| = |x| |y|, reduces to

xy <|xy

>

which is clearly true. Hence the required inequality follows, since
each of the above steps is reversible. a
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1.15 Corollary

For all real x, y we have

ol = Iyl < b =1 0
Proof Similar to 1.14. O
1.16 Exercises
Prove the following inequalities.
(i) |ab| <i(a®+ b?).
(ii) |a+b+c|<lal+|b|+]c|. O

Solving inequalities involving modulus can often be achieved by
observing that |x — y| represents the distance between x and y. It
follows that, e.g., |x| <A is equivalent to —A <x < A, a fact which
can itself be used to solve inequalities of certain types.

1.17 Worked example
Solve |x — 4| <7.
Removing the modulus sign yields
-T<x—4<7,
which, on adding 4 throughout, becomes
-3<x <11,

which is the answer. (|

1.18 Exercises

Solve the following inequalities.
(i) x+1]<1.
(i) Jx +2| <|x ~2|. a

All the axioms or laws so far mentioned are satisfied by the
rational numbers. And yet the rational numbers do not include V2.
In order to ensure V2 exists as a real number we shall introduce one
more axiom called the upper bound axiom. Before we can state this

axiom, it will be necessary to set up some notation and make some
definitions.
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1.19 Notation

We shall write {x: P(x)}, where P(x) is a proposition involving x, to
mean the set of all x for which P(x) is true. For example {x :x >0}
denotes all positive numbers, {1/n:n =1, 2, 3, ...} denotes the set
consisting of all reciprocals of positive integers. If a <b are real
numbers, we shall write

[a, b] = {x:a<sx<b},
and call it the closed interval from a to b, and
(a, b) ={x:a<x<b},

and call it the open interval from a to b. If E is any set and x is any
number, we shall write x € E to mean that x belongs to E. For
example, 1 € [0, 1]. 0O

1.20 Definition

If E is any set of real numbers, and M is another real number, we
say M is an upper bound of E if x <M for all x € E. d

Examples

1 is an upper bound for the closed interval [0, 1]. If E is the set of
all ages of living American presidents, then 120 is an upper bound
for E. O

We define a lower bound of E similarly as any m such that x =m
for all xe E. For example, 0 is a lower bound for both sets
mentioned in 1.21.

We say E is bounded above if E has an upper bound, and
bounded below if E has a lower bound. We say simply E is bounded
if E is bounded above and below. For example, both sets of 1.21 are
bounded. The set {x:x >0} is bounded below, but not bounded
above.

1.22 Definition

We say M is the maximum of E, and we write M =max E, if M e E
and M > x for all other x € E, i.e. M is an upper bound of E which
belongs to E.

We define the minimum of E, denoted by min E, similarly. O
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For example, max [0, 1]=1, min [0, 1] =0. However, if E = {1/
n:n=1,2,3,...}, then clearly max E =1, but E has no minimum.
This is because no point of E can be a lower bound for E since, for
any particular n, we have

1 1
<-.
n+1l n
1.23 Theorem
Every finite set has a maximum and a minimum. O
Proof This is by induction on the size of the set. If E is the singleton {x}

consisting of the single point x, then clearly max E = min E =x.
Suppose the theorem is true for all sets with n points, and that £
has n + 1 points. Let

E={x,x,5 ..., Xpi1)s
i.e. E consists of the points x,, x,, . .., x,,,. Then
F={x,x,...,x,)}

has n points so has a maximum and a minimum by assumption. Let
these be M, m. By the trichotomy axiom, we have x,,,> M or <M,
giving respectively max E =x,,,, or M. The argument for min E is
similar. a

1.24 Definition

If E is bounded above, then M is the least upper bound or
supremum of E, denoted by -sup E, if M is an upper bound of E,
and M is less than every other upper bound of E. a

1.25 Examples

Clearly sup E = max E if max E exists. If E is the open interval
(0,1), then 1=supE, since clearly 1 is an upper bound, and any
other upper bound must be greater than 1. Observe, however, that
(0, 1) has no maximum.

1.26 Upper bound axiom

Every non-empty set E of real numbers which is bounded above has
a supremum. d



