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Preface

The principal theme of this book is “‘the existence and differentiability
of the solutions of variational problems involving multiple integr
We shall discuss the corresponding questions for single integrals only
very briefly since these have been discussed adequately in every other-
book on the calculus of variations. Moreover, applications to engineer-
ing, physics, etc., are not discussed at all; however, we do discuss
mathematical applications to such subjects as the theory of harmonic
integrals and the so-called **d-Neumann” problem {see Chapters 7 and 8).
Since the plan of the book is described in Section 1.2 be]ow we shall
merely make a few observations here.

In order to study the questions mentioned above it is necessary to
use some very elementary theorems about convex functions and opera-
tors on Banach and Hilbert spaces and some special function spaces,
now known as “‘SOBOLEV spaces’’. However, most of the facts which we
use concerning these spaces were known before the war when a diffecent
terminology was used (see CALKIN and MORREY [5]); but we have in-
cluded some powerful new results due to CALDERON in our exposition
in Chapter 3. The definitions of these spaces and some of the ‘proofs
have been made simpler by using the most élementary ideas of distribyg,
tion theory; however, almost no other use has been made of that theory
and no knowledge of that theory is required in order to read this book.
Of course we have found it necessary to develop the theory of linear
elliptic systems at some length in order to present our desired differenti-
ability results. We found it particularly essential to consider “‘weak
solutions” of such systems in which we were often forced to allow dis-
continuous coefficients; in this connection, we include an exposition of
the DE GIORGI—NASH—MOSER results. And we include in Chapter 6
a proof. of the analyticity of the solutions (on the interior and at the
boundary) of the most general non-linear analytic elliptic system with
general regular (as in AGWON; DovcLis, and NIRENBERG) boundary con-
ditions. But we confine ourselves to functions which are analytic, of
class C=, of class C} or C* (see § 1.2), or in some Sobolev space HT with
m an integer = O (except in Chapter 9). These latter spaces have been
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defined for ail real m in a domain (or manifold) or on its boundary and
have been used by many authors in their studies of linear systems. We
have not included a study of these spaces since (i) this book is already
sufficiently long, (ii) we took no part in this development, and (iii) these
spaces are adequately discussed in other books (see A. FRIEDMAN [2],
HORMANDER [1], LIONS [2]) as well as in many papers (see § 1.8 and
papers by LioNs and MAGENES).

The research of the author which is reported on in this book has
been partially supported for several years by the Office of Naval Research
under contract Nonr 222(62) and was partially supported during the
year 1961 —62, while the author was in France, by the National Science
Foundation under the grant G—19782.

Berkeley, August 1966
CHARLES B. MoRREY, JR.
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Chapter 1

Introduction

1.1. Introductory remarks

The principal theme of these lectures is ““the existence and differenti-
ability of the solutions of variational problems involving multiple in-
tegrals.”’ I shall discuss the corresponding questions for single integrals
only very briefly since these have been adequately discussed in every
book on the calculus of variations (see, for instance, AKHIEZER {1),
Buiss [1], BorLza [1], CARATHEODORY [2], FuNKk (1], PArs [1]. Moreover,
I shall not discuss applications to engineering, physics, etc., at all,
although I shall mention some mathematical applications.

In general. I shall consider integrals of the form

(1.1.1) I(s,G) =ff[x,z.(x), Vi(x))dzx
é

where G is a domain,

('1 1.2) x=(x,...,x), z=(2,... W), dx =dx1...d2,

2(x) is a vector functlon, V z denotes 1Ls gradient which is the set of func-
tions {«,}, where s, denotes '9s4dx*, and f(x,z p)(p = {$8)) is
generally assmned continuous in all its arguments The integrals

fy1 ¥ (@zfdn)t dx andjf[ (35) axan .

are fammax examples of integrals of the form (1.1.1.) in which N = 1 in

both cases, » = 1 in the first case, » = 2 in the second case and the

corresponding functions f are defined respectively by
fEap)=Y1+p  [ixap) = +5

where we have omitted the superscripts on z and p since N = 1. The

second integral is a special case of the Dirichlet sntegral which is defined

~_.in general by
(343) D(.G) = [|Vaftdx, fxzp) = pt = 3 (pU8.
0 .

i

Another example is the area inlegral

- (114 4(0) f“ [;’fﬁ,’li’i] ['g:i.‘z:i)]z_F[g:il_'z:l)]’dxldxz




2 Introduction

which gives the area of the surface _
(1.1.5) 2= 2(x, x%), (¥1,2%)€G, (=123

It is to be noticed that the area integral has the special property that it
is invariant under diffeomorphisms (1— 1 differentiable mappings, etc.)
of the domain G onto other domains. This is the first example of an in-
tegral in parametric form. I shall discuss such integrals later (in Chapters
9 and 10). '

I shall also discuss briefly integrals like that in (1.1.1) but involving
derivatives of higher order. And, of course, the variational method has
been used in problems which involve a ‘‘functional” not at all like the
integral in (t.1.1); as for example in proving the Riemann mapping
theorem where one minimizes sup | f(z)| among all schlicht functions f(2)
defined on the given simply connected region G for which f{zp) = 0 and
f’(z0) = 1 at some given point zp in G.

We shall consider only problems in which the domain G is fixed;
variations in G may be taken care of by transformations of coordinates.
We shall usually consider problems involving fixed boundary values;
we shall discuss other problems but will not derive the transversality
conditions for such problems.

1.2. The plan of the book: notation

In this chapter we attempt to present an overall view of the principal
theme of the book as stated at the beginning of the preceding section.
However, we do not include a discussion of integrals in parametric form;
these are discussed at some length in Chapters 9 and 10. The material in
this book is not presented in its logical order. A possible logical order
would be § 1.1 —1.5, Chapter 2, Chapter 3, §§ 5.1—5.8, § 5.12, Chapter 6,
§§1.6—1.9, §§4.1, 4.3, 4.4. Then the reader must skip back and forth as
required among the material of § 1.10, 1.11, 4.2, 5.9, 5.10 and 5.11. Then
" the remainder of the book may be read substantially in order. Actually,
Chapters 7 and 8 could be read immediately after § 5.8.

We begin by presenting background material including derivations,
under restrictive hypotheses, of Euler's equations and the classical
necessary conditions of Legendre and Weierstrass. Next, we include a
brief and incomplete presentation of the classical so-called ““sufficiency”’
conditions, including references to other works where a more complete
presentation may be found.

The second half of this chapter presents a reasonably complete out-
line of the existence and differentiability theory for the solutions of
variational problems. This begins with a brief discussion of the develop-
ment of the direct methods and of the successively more general classes
of “admissible”” functions, culminating in the so-called “‘Sobolev spaces”.
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These are then defined and discussed briefly after which two theorems
on lower-semicontinuity are presented. These are not the most general
theorems possible but are selected for the simplicity of their proofs
which, however, assume that the reader is willing to grant the truth of
some well-known theorems on the Sobolev spaces. The relevant theorems
about these spaces are proved in Chapter 3 and more general lower-
semicontinuity and existence theorems are presented in Chapter 4.

In Section 1.10 the differentiability results are stated and some preli-
minary results are proved. In Section 1.11, an outline of the differenti-
ability theory is presented. It is first shown that the solutions are “weak
solutions’” of the Euler equations. The theory of these non-linear equa-
tions is reduced to that of linear equations which, initially, may have
discontinuous coefficients. The theory of these general linear equations
is discussed in detail in Chapter 5. However, the higher order differenti-
ability for the solutions of systems of Euler equations required the same
methods as are used in studying systems of equations.of higher order.
Accordingly, we present in Chapter 6 many of the results in the two
recent papers of AGMON, DouGLIs, and NIRENBERG ([1], [2]) concerning
the solutions and weak solutions of such systems. Both the Ly-estimates
and the SCHAUDER-type estimates {concerning HOLDER continuity) are
presented. We have included sections in both Chapters § und 6 proving
the analyticity, including analyticity at the boundary, of the solutions ot
both linear and non-linear analytic elliptic equations and systems; the
most general ‘ ‘properly elliptic” systems with ‘‘complementing boundary
conditions” (see § 6.1) are treated. The proof of analyticity in this genera-
lity is new. In Chapter 2 we present well-known facts about harmonic
functions and generalized potentials and conclude with proofs of the,
CALDERON-ZYGMUND inequalities and of the maximum principle for the
solutions of second order equations.

In Chapters 7 and 8, we present applications of the variational method
to the HODGE theory of harmonic integrals and to the so-called J-NEu-
MANN problem for exterior differential forms on strongly pseude-convex
complex analytic manifolds with boundary. In Chapter 9, we present a
brief discussion of y-dimensional parametric problems in general and
then discuss the two dimensional Plateau problem in Euclidean space
and on a Riemannian manifold. The chapter concliides with the author’s
simplified proof of the existence theorem of CESARI [4], DANSKIN, and

.S16aLov [2] for the general two dimensional parametric problem and
somitrcomplete results concerning the* dxfferentzabﬂlty of the solutions
of such problems. In Chapter 10, we present thg. author’s simplification
of the very important ‘resent work of REIFENBERG. {13, (2], and [3) con-
cerning the higher dimensional PLATEAU problem ‘and the author’s ex-
tension of these results to varieties on a Rlemannmn manifold.
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Notations. For the most part, we use standard notations. G and D
will denote domains which are bounded unless otherwise specified. We
denote the boundary of D by 8D and its closure by . We shall often use
the notation D C C G to mean that D is compact and D C G. B(xp, R)
denotes the ball with center at x and radius R. y, and I, denote the »-
_ measure and (v — 1)-measure of B(0,1) and dB(0,1), respectively. We
often denote d.B(0,1) by 2. Most of the time (unless otherwise specified)
we let Rg be ¢g-dimensional number space with the usual metric and ab-
breviate B(0,R) to B, denote by o the (v — 1)-plane 17 = 0, and define

R ={xja>0}, R;={z]|x <0}
(1.2.1) Gg =BRﬂR,+, ZR=3BRﬂRj, or = BrNo
Gz = BrNR,;, ZX;=0BgNR,.

If S is a set in Rg, |S| denotes its Lebesgue g-measure; if x is a point,
d(x, S) denotes the distance of x from S. We define

fa,b] ={xja* < »» < b, a=1,...,v, 2€ R,}.

In the case of boundary integrals, we often use dx, to denote n,dS
where dS is the surface area and #, is the x-th component of the exterior
normal. We say that a function u< C»(G) iff (if and only if) # and its
partial derivatives of order <» are continuous on G and w <€ C#(G) iff
%€ C*(G) and each of its derivatives of order <# can be extended to be
continuous on &. 1f0 < u < 1, € C2(G) (or C2 (G)) & (i.e. iff) u€ C*(G)
(or C%(G)) and all the derivatives of order <# satisfy a HSLDER (Lip-
scHITZ if 4 = 1) condition on each compact subset of G (or on the whole
of G as extended). If € CS(5), then A, (v, G) = sup |xs — | ~#.
[#4(xs) — #(x1)}| for x; and x3€ & and x; # xz. A domain G is said to be
of class C» (or C3, 0 < # << 1) iff G is bounded and each point Py of 3G
is in a neighborhood n on & which can be mapped by a 1—1 mapping
of class C» {or (%), together with its inverse, onto Gg U og for some R
in such a way that Py corresponds to the origin and n U 3G corresponds
toor. If u€ C1{G), we denote its derivatives du/dx% by « .. 1f 4 € Ca(G),
then V2u denotes the tensor u ,,5 where & and § run independently from
tor. Likewise V34 = {u 45y}, etc., and | V2|2 = Z|u,,p|’ etc. If G is

also of class C1, then Green’s theorem becomes (m our notations)

fu,a (x)dx-———fun,ds =fudx,.
@ 3¢ 3¢

Sometimes when we wish to consider u as a function of some single x=,
we write x = (2%, x,) and u(x) = u(x®, x,) where x, denotes the remain-
ing ##. One dimensional or (» — 1)-dimensional integrals are then in-
dicated as might be expected. We often let « denote a “multi-index’’,
i.e. a vector (a1, .. ., &) in which each «; is a non-negative integer. We
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then define

loe] = o1+ + &, D*u =

OQlaiy
@)% .. (3a)*

(ue Ci=1(G))

al= (). (), Co= 2 g = )™ ey

Using this notation
|Vt = 3 Co|Deuft.
jai=m

We shall denote constants by C or Z with or without subscripts. These
constants will, perhaps depend on other constants; in this case we may
write C = C(h, p) if C depends only on % and g, for example. However,
even though we may distinguish between different constants in some
discussion by inserting subscripts, there is no guarantee that Cs, for
example, will always denote the same constant. We sometimes denote
the support of # by spt #. We denote by C*(G), C(G), and C%, (G) the
sets of functions in C*(G), C*(G), or C¥(G), respectively, which have
support in G (i.e. which vanish on and near 3G). But it is handy to say
that « has support in G U or © « vanishes on and near Sx (see 1.2.1);
we allow #%(x) to be 3 0 on op. :

1.3. Very brief historical remarks

Problems in the calculus of varations which involve only single
integrals (v = 1) have been discussed .at least since the time of the BER-
NOULLI's. Although there was some early consideration of double inte-
grals, it was RIEMANN who aroused great interest in them by proving
many interesting results in function theory by assuming DIRICHLET'S
principle which may be stated as follows: There is a unique function whick
minimizes the DIRICHLET tnbegral among all functions of class C on a
domain G and continuous on G which takes on given values on the boundary
G and, moreover, that function is harmonic on G.

RIEMANN’s work was criticized on the grounds that just because the
integral was bounded below among the competing functions it didn’t
follow that the greatest lower bound was taken on in the class of compet-
ing functions. In fact an example was given of a (t-dimensional) integral
of the type (1.1.1) for which there is no minimizing function and gnother
was given of continuous boundary values on the unit circle such that
D(z, G) = + oo for every z as above having those boundary values.

The first example is the integral (see COURANT [31)

(1.3.1) 1(.6) =f[1 + (;;)*]"‘dx, G =(0,1),
(1]

the admissible functions z being those € C1 on [0.1] with
z0) =0 and z{A) = 1.
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Obviously I(z, G) > 1 for every such 2, I(z, G) has no upper bound and
if we define

)_0 0 2 <7 ,O<yr <1,
#nl ——{—1 + 14 3(x —n2/(1 — 722, r < x <1

we see that [{z,, G) - 1 as7—> 11—,

The second example is the following (see COURANT [3]) It is now
known that Dirichlet’s principle holds for a circle and that each func-
tion harmonic on th€ unit circle has the form

(1.3.2) w(r,0)= 329 + f‘ r8(ay cosn@ + bysinn®), (as, by const),
=1
in polar coordinates and that the Dirichlet integral is
(1.3.3) Dw,G)=n 2; n (a2 + b2)
-—

provided this sum converges. But if we define
ay =k2if n =~ ,an =0y = 0 otherwise,

we see that the series in (1.3.2) converges uniformly but that in (1.3.3)
reduces to
o) Al
® #
: k=1
which diverges.

DiricHLET's principle was established rigorously in certain important
cases by HILBERT, LEBESGUE [2] and others shorly after 1900. That was
the beginning of the so-called ‘‘direct methods’ of the calculus of varia-
tions of which we shall say more later.

There was renewed interest in one dimensional problems with the
advent of the MorsE theory of the critical points of functionals in which
M. Morske generalized his theory of critical points of functions defined
on finite-dimensional manifolds [1] to certain functionals defined on in-
finite-dimensional spaces [2], [3]. He was able to obtain the MoORSE
inequalities between the numbers of possibly ‘“‘unstable” (i.e. critical
but not minimizing) geodesics (and unstable minmal surfaces) having
various indices (see also MORSE and ToMPKINS, [1]—[4]). Except for the
latter (which could be reduced to the case of curves), MORSE’s theory
was applied mainly to one-dimensional problems. However, within the
last two years, SMALE and ParLars and SMALE have found a modification
of MoRrsE's theory which is applicable to a wide class of multiple inte-
gral problems.

Variational methods are beginning to be used in differential geometry.
For example, the author and Eells (see MORREY and EELs, MORREY,



1.4. The EULER equations 7

[11] and Chapter 7) developed the HobGE theory ([1], [2]) by variational
methods (HoDGE’s original idea [1]). HORMANDER (2], KOHN [1], SPEN-
cER (KouN and SPENCER), and the author (MORREY [19], [20]) have
applied variational techniques to the study of the d-Neumann problem
for exterior differential forms on complex analytic manifolds (see Chap-
ter 8; the author encountered this problem in his work on the analytic
embedding of real-analytic manifolds (MORREY [13]). Very recently,
EELLs and SamMPsoN have proved the existence of ““harmonic’” mappings
(i.e. mappings which minimize an intrinsic Dirichlet integral) from one
compact manifold into a manifold having negative curvature. Since the
inf. of this integral is zero if the dimension of the compact manifold
>2, they found it necessary to use a gradient line method which
led to a non-linear system of parabolic equations which they then
solved; the curvature restriction was essential in their work.

1.4. The Euler equations

After a number of special problems had been solved, EULER deduced
in 1744 the first general necessary condition, now known as EULER’s
equation, which must be satisfied by a minimizing or maximizing arc.
His derivation, given for the case N = » = 1, proceeds as follows: Sup-
pose that the function z is of class C! on [, 4] (= G) minimizes (for
example) the integral I{z, G) among all similar functions having the
same values at a and b. Then, if { is any function of class C1 on [4, 3] -
which vanishes at a and b, the function z + A is, for every A, of class
C1 on [a, b} and has the same values as z at ¢ and b. Thus, if we define

b
(1.41) oA =I(z+1,6) = _[f[x,z(x) + AL(x), 2 (%) + Al (v)]dx

@ must take on its minimum for 4 = 0. If we assume that fis of class C1
in its arguments, we find by differentiating (1.4.1) and setting 2 = 0 that

(1.4.2) f{&" ol 2(x), 2 (%)) () felx,2(x). 2 (%)]}dx =0

(p——-;)}, etc.).

The integral in (1.4.2) is called the first variation of the integral I; it is
supposed to vanish for every ¢ of class C? on [a, b] which vanishes at a
and b. If we now assume that f and z are of class C? on {a, b] (EULER
had no compunctions about this) we can integrate (1.4.2) by parts to
obtain

b
(143) [ — Lo} =0, fp=lplx2(8). V(). etc.
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Since (1.4.3) holds for all { as above, it follows that the equation
B .

(1.4.4) afr=1r

must hold. This is Ewler's equation for the integral I in this simple case.
If we write out (1.4.4) in full, we obtain

(1.4.9) fop 2" +fpzz'+fpz=fz

which shows that Euler’s equation is non-linear and of the second order.
It is, however, linear in z'’; equations which are linear in the derivatives of
highest order are frequently called guasi-linear. The equation evidently
becomes singular whenever f,p, = 0. Hence regular variational problems
are those for which fpy never vanishes; in that case, it is assumed that
fpp > 0 which turns out to make minimum problems more natural than
maximum problems.

It is clear that this derivation generalizes to the most general integral
(1.1.1) provided that f and the minimizing (or maximizing, etc.) functiop
z is of class C2 on the closed domain G which has a sufficiently smooth
boundary. Then, if z minimizes J among all (vector) functions of class €1
with the same boundary values and { is any such vector which vanishes
on the boundary or G, it follows that z 4+ A is a “competing” or “ad-
missible”” function for each 4 so that if ¢ is defined by

(1.4.6) oA = I(z + A, G)
then ¢’(0) = 0. This leads to the condition that
N y .
(1.4.7) [E{ St s+ Cubdr=0
. P =Y = T

for all { as indicated. The integral in (1.4.7) is the first variation of the
general integral (1.1.1). Integrating (1.4.7) by parts leads to

N .4 P
f ci.{f"x._ 5-};{;_f,,(}da:—.:O.
G =3

[0

Since this is zero for all vectors {, it follows that

»
o .
(14.8) ' -a-—;;fp:::fgf, 4 = 1,...,.N
which is a quasi-linear system of partial differential equations of the
second order, In the case N = {, it reduces to

"2 fpemta or
(1.49) = 0

14 ¥

).;_lfp.ppzvuﬁ + £ (Fpge2ia + fo,27) = fe-

LN ]



1.4. The EULER equations 9

The equation (1.4.9) is evidently singular whenever the quadratic form
(1.4.10) 3 frav (55,8 Ml
«,

-in 4 is degenerate.
. We notice from (1.4.5) that if N =» = 1 and f depends only on p
and the problem is regular, then Euler’s equation reduces to

Z' =0.
In general, if f depends only on p(= p}), Euler’s equation has the form
’%‘Bf,,;,;z{',ﬂ =0 ¢i=1,..,N

and every linear vector function is a solution. In particular, if N =1
and f = |p|?, Euler’s equation is just Laplaces equation

Adz= Y 2,44 =0.

In case f — (1 + |p|?)!/4 as in the first example in § 1.3, we see that
4fop = (2 — p%) (1 4 p)-7/4 '
which is ndf‘;lways > 0. On the other hand fpp > 0 if |p| < )2 so
classical results which we shall discuss later (see § 1.6) show that the
linear function z(x) = x minimizes the integral among all arcs having
12'(#)] < V2.
" We now revert to equation (1.4.9). If we take, for instance, N — 1,
v =2, f = p} — p%, then (1.4.9) becomes
02z 2z
= 2 (= 575 — s0a) = 0
which is of hyperbolic type. Moreover, the integral (1.1.1) with this f
obviously has no minimum or maximum, whatever boundary values are
given for z. Anyhow, it is well known that boundary value problems are
not natural for equations of hyperbolic type. If » > 2 a greater variety
of types may occur, depending on the signature of the quadratic form
(1.4.10). A similar objection occurs in all cases except those in which the
form (1.4.10) is positive definite or negative definite; we shall restrict
ourselves to the case where it is positive definite. In this case Euler’s
equation is of elliptic type. The choice of this condition on f is re-enforced
by analogy with the case » = 1; in that case fpp > 0 implies the con-
vexity (see § 1.8) of f as a function of p for each (x, z) and the non-negative
definiteness of the form (1.4.10) is equivalent to the convexity of fasa
function of gy, . . ., £, for each set (x1, . . ., a*, z). Our choice is re-enforced
further by the classical derivation given in the next section.

* Greek indices are summed from 1 to » and Latin indices are summed from
1 to N. Hereafter we shall usually employ the summation convention in which
repeated indices are summed and summation signs omitted.



