Computéer Haorowware
am® Organizations
An Introduction

M. E. SLOAN

Computer Hoardware
and® Organizations
An Introduction

M. E. SLOAN
Michigan Technological University

(P83

|
SCIENCE RESEARCH ASSOCIATES, INC. -

Chicago, Palo Alto, Toronto .
. Henley-on-Thames, Sydney, Paris, Stuttgart

A Subsidiary of IBM

PREFACE

This text is intended for an introductory course in computer hardware
and computer organization. Students are assumed to have taken the
usual mathematics courses taught in American schools through at
least the first two years of high school. The text is suited for college
freshmen or sophomores but, with the optional sections, can be used
for juniors and seniors. -

At Michigan Technological University, this text is used in a one-
term introductory course in computer engineering usually taken by
three types of students. Electrical engineering students who intend
to specialize in computer engineering take the course to survey areas
of computer engineering that do not require a background in elec-
tronic circuits or in advanced mathematical techniques. Other elec- -
trical engineering and a few other engineering students who are not
primarily interested in computer engineering take the course for an
understanding of computer hardware. Computer science students also
take the course as.a computer hardware course. The text is supple-
mented by a laboratory program. Students design and construct
several simple logic circuits and write a few machine language and
assembly language programs.

The theme of the text is computer structure. The structure of
a computer is examined at several progressive levels. Structures at
one level become the components of a higher level. The text begins
at the logic level, skipping over the electronic circuit level, a discussion
of which would require the student to have a background in physies,
circuit analysis, and electronics that is not needed for the rest of
the book. Unlike most other introductory computer hardware texts,
the text does not begin with number representation. This topic is
covered in an appendix where it may serve as a review for students
who are familiar with it; many students have'learned binary arith-
metic in high school or elsewhere. An instructor may choose to begin
with this appendix. More advanced aspects of number representation
for computers are treated in context as they are needed.

The main chapters are prefaced with an overview that allows the
student to prepare a mental framework for the material of the chapter
in accordance with the principles of cognitive learning theory. Each
chapter ends with a summary, references, and problems. The section
of the text needed for each problem is shown in parentheses to
facilitate assigning problems. Answers for selected odd-numbered
problems are given in appendix B. Since this is an introductory text,

xli Preface

most references are to other texts rather than to the original research
papers.

Chapter 1 presents an overview of the structural levels of the
computer. The logic level discussions (chapters 2 through 5) cover ,
combinational logic circuit analysis and design; logic technologies
and integrated circuit implementations of standard logic functions;
flipflops and sequential circuits, concentrating on common computer
circuits such as registers and counters; and construction of logic
systems from register-transfer modules. Chapter 6 consolidates the
material on the logic level by discussing the arithmetic circuits needed
for a computer.-The programming level is treated in chapters 7
through 8, which discuss the machine language and assembly lan-
guage programming sublevels. Memories and microprogramming,
input/output devices and interrupt handling, and the organization of
minicomputers and microprocessors are developed in chapters 9, 10,
and 11, respectively—the systems level. The back matter ‘includes
tables of instructions and codes for the PDP-8, a review of binary
arithmetic, and a glossary.

The discussion in chapters 7 and 8 centers on minicomputers-since -
we-think students should have hands-on experience with a computer,
and minicomputers are both relatively inexpensive and widely avail-
able for student use in most universities. The discussion of program-

- ming is made as general as possible, using the PDP-8 (the most widely

used minicomputer) as a continuing example. Instruction sets of other
popular’ minicomputers and microcomputers are also discussed.
The instructor can readily supplement this material with information
about any computer available for class use.

Many people helped in the development of this text. At Michigan
Tech Arnold Lee reviewed an early version of the manuscript, and
Ted Grzelak taught two classes from a later version and contributed
many helpful suggestions. Harold Stone of the University. of Mas-
sachusetts encouraged me throughout the developmental process.
Dale Anderson (Iowa State University), Jay Bayne (California Poly-
technic State University), John Keown (Southern Technical Insti-
tute, Marietta), Donald P. Leach (Foothill College), Robert J. Smith,
IT (Lawrence Livermore Laboratory), Michael G. Thomason (Univer-

- sity of Tennessee, Knoxville), John Wakerly (Stanford University),

and Gerald E. Williams (formerly of Riverside City College) also
reviewed the manuscript and contributed many improvements. Also
essential to the book’s development was the careful typing of Ruth
Tepsa and Phyllis Brumm.

CONTENTS

Preface

1 Overview

11
1.2
1.3
14
15
1.6
1.7

Introduction
Electronic Circuit Level
Logic Level

‘Programming Level

Computer Systems Level
Summary
References

PART | THE LOGIC LEVEL

2 Combinational Logic

2.1
2.2

2.3.

24

25

2.6
2.7
2.8

Overview

Introduction

Basic Switching Functions

Composite Functions

2.4.1 Generalization of Basic Operations
2.4.2 Logical Equivalence

2.4.3 Analysis of Complex Loglc Circuits
Switching Algebra

2.5.1 Postulates

2.5.2 DeMorgan’s Theorems

2.5.3 Duality

2.5.4 Proof of Theorems

2.5.5 Generalized DeMorgan’s Theorem *

-Canonical Forms and Gate Implementations

Algebraic Simplification

Karnaugh Map

2.8.1 Minimization by Karnaugh maps
2.8.2° Minimization Procedure

. 2.8.3. Don’t Care Conditions
.2.8.4 - Product-of-Sums Minimization
2.85 Karnaugh Maps for Additional Vanahles

2.9 -Quine-McCluskey Tables
. 2.10 Summary
2.11 References
2.12 Problems

00 00 =3 Wt Lo W

11
12
12

19-
22.

23
23

25
27
27
28

- 30

- 33

40
48

.51

53
55
59
61

69

v Contents

3 Cembinational Logic Circuits and Logic Technologies

+
3.1

32

3.3

3.4

3.5
3.6
3.7
3.8
3.9

Overview

Practical Consjderations

321 Voltage ‘Assignments

3.2.2 Timing

3.2.3 Power Requirements

'3.24 Noise Immunity

Logic Technologies

3.3.1 Bipolar Technologies
Transistor-Transistor-Logic
Emitter-Coupled-Logic

3.3.2 MOS Technology

Standard Logic Circuits

3.4.1 NAND, NOR, AND, OR, and NOT Gates

3.42 AND-OR-INVERT Gates

Decoders

Multiplexers

Summary

References

Problems

4 Sequential Logic

4.1
42
43

44

4.5

- 4.6

47
48
49

Overview

RS Flipflops

Clocked Flipflops

43.1 RS Flipflop

432 Master-Slave Flipflops

D, T, and JK Flipflops

44.1 D Flipflops

442 T Flipflops

443 JK Flipflops

Registers

4.5.1 Shift Registers

4.5.2 Parallel Transfers

Counters :

4.6.1 Modulo 2* Counters

4.6.2 BCD Counters

4.6.3 Decoders

State Notation .
Synchronous Sequential Circuit Analysis
Synchronous Sequential Circuit Design

4.10 More Counters
4.11 Summary

4.12 References
4.13 Problems

00 =3 =3 ~I ~J
MOIADD

ECERRRBLERR

116
116
122
123
126
128
128
128
128

130

133
134
134

134

139
140
140
146
151

158

160
162
162

5 Register-Transfer Logic

5.1
5.2
5.3

54’

5.5

5.6
5.7
5.8
5.9

6.1
6.2

6.3

6.4
6.5

6.6

6.7
6.8

Overview
Register Notation
Register Transfers

5.3.1 Conditional Transfers and Sequencing

532

Register-Transfer Languages

Register-Transfer-Level Components
Register-Transfer Modules

5.5.1
5.5.2
5.5.3

5.56.4

Type T Modules (Transducers)
Type M Modules (Memories)
Type DM Modules

(Data Operation Combined with Memory)

Type K Modules

RTM System Examples
Summary

References

Problems

- Arithmetic Unit

Overview :
Number Representation

6.2.1
6.2.2
6.2.3
6.2.4
6.2.56

Signed-Magnitude Representation
Ones Complement Representation
Addition in Ones Complement
Twos Complement Representation
Addition in Twos Complement

Addition -

6.3.1
6.3.2
6.3.3
6.3.4

Half Adder

Full Adder -

Serial Adders -
Parallel Adders

Multiplication
Division

6.6.1
6.6.2
6.6.3
6.6.4

Logic Operations

Basic Logic Operations
Shifts

Comparators
Error-Detecting Circuits

BCD Adders
Floating Point Binary Arithmetic

6.8.1

- 682
6.9 Summary
6.10 References
6.11 Problems

Multiplication and Division
Addition and Subraction

Contents v

169
170
172
174
178
179
181
181
181

181
182
184
187
189
190

192
193
193
194
194
195
196
198
198
198

201

210
214
215
217
218
226
229
231
233
235
236
- 239
239

vi Contents

PART I THE PROGRAMMING LEVEL

7 Machine Language Programming

7.1 Overview 245
7.2 Instructions 246
7.2.1 'Four-Address Instructions ’ . 248
7.2.2 Three-Address Instructions 249
7.2.3 Two-Address Instructions 250
7.24 One-Address Instructions 251
7.2.5 Zero-Address Instructions 252
7.2.6 Pushdown Stacks ’ 253
-7.3 Instruction Classes ' 254
7.3.1 Memory Reference Instructions 256
7.3.2 Register Instructions 266
7.3.3 - Input/Output Instructions 269
7.4 Execution of Instructions 270
7.5 Machine Language Programming 272
7.6 Programming Techniques 277
7.6.1 Counters 277
7.62 Pointers 279
7.6.8" Loops o280
7.64 Subroutines 281
7.7 . Instruction Bets of Computers 285
7.8 Summary : 288
7.9 References) - 290
7.10 Problemss 290

8 Assembly Language Programming

81 Overview . ' 295
82 Assembly Language 296
8.2.1 - Instruction Format 297

8.2.2 Data Format) 298

82.3 Special Characters 299

82.4 - Sample Programs . 299

8.3 A Two-Pass Assembler 301
84 Other Pseudo-Operations 306
84.1 Macros 306

8.4.2 Octal and Decimal - 307

8.5 Programmed Input/Output Transfers 308
" 86 Symbolic Programming 316
‘ 8.6.1 Storage of Characters 316
86.2 Reading Character Strings 317

86.3 Tables 319

8.7 Loaders 320

Contents vii

8.8 High-Level Languages and Translators 324

8.8.1 A Simple Compiler - 326
8.8.2 Program-Oriented Languages 327
8.9 Microprogramming : 328
8.10 Executives and Operating Systems 330
8.11 Summary : - 331
8.12 References : 333

8.13 Problems 333

PART ll THE SYSTEMS LEVEL

9 Memory »)
9.1 Overview 337
9.2 Main Memory Organization 338
9.3 Random-Access Memories 339
) 9.3.1 Semiconductor RAMs 340
9.3.2 Core Memories ' 344
9.4 Read-Only Memories (ROMs) 357
9.5 Semirandom-Access and Sequential-Access Memories 359
9.5.1 Magnetic Drumns 360
9.5.2 Magnetic Discs : 361
9.5.3 Floppy Discs 362
9.5.4 , Shift Register Memories 362
9.5.5 Optical Memories 362
9.56 Magnetic Tapes 363
9.6 Magnetic Recording Techniques 364
9.6.1 Return-to-zero Recording 364
9.6.2 Return-to-bias Recording 365
9.6.3 Nonreturn-to-zero Recording 366
9.7 Memory Hierarchies 368
98 Summary 369
9.9 References 370
9.10 Problems 370

10 Input/Output

10.1 Overview 374
10.2 External Devices 374
10.3 Input/Output Requirements 376
-10.4 Modes of Control . 378
’ 10.4.1 Programmed Input/Output 378
. 1042 Interrupts 378
10.5 Modes of Transfer . 387
10.5.1 Direct Transfer 387
10.5.2 Buffered Transfer 388

10.5.3 Direct Memory Access 390

vili Contents

10.6

10.7
108
10.9

Survey of Typical Input/Output Devices

10.6.1 Typewriters and T:leprinters

10.6.2 Display Devices and Plotters

10.6.3 Paper Tape

10.6.4 Cards

10.6.5 Line Printers

10.6.6 Analog-to-Digital and Digital-to-Analog Converters
Summary

References

Problems

11 Computer Systems

11.1
11.2

11.3

114

Overview ,

Organization of a Typical Computer
11.2.1 Bus Organization

11.2.2 Instruction Control

The HP-35 Calculator

11.3.1 Read-Only Memories

11.3.2 Control and Timing Circuit
11.3.3 Arithmetic and Register Circuit
The MCS-4 Microcomputer

11.4.1 4004 CPU

' -11.4.2 Address Register and Address Incrementer

115

11.6

11.7

11.4.3 Index Register
1144 Adder

11.4.5 Instruction Register
114.6 Input/Output Circuits
11.47 System Organization
11.4.8 Instruction Timing
11.4.9 Instructions

11.4.10 4040 Features
PDP-8 Minicomputer

11.5.1 Instructions

11.5.2 Timing

11.5.3 Interrupts

11.5.4 Direct Memory Acc
PDP-11 ‘
11.6.1 CPU Structure
11.6.2 Instructions

11.6.3 Control

11.6.4 Interrupts

IBM 370

11.7.1 Data Formats

11.7.2 Instructions

11.7.3 Operation

11.7.4 Interrupts

394
394
395
396
398
398

407

411

411
413
415
423
426
427
427
428
429
429
432
432
432
432

437

11.8 Computer Networks
11.8.1 Network Communications
11.9 Summary
11.10 References
11.11 Problems

Appendix A Review of Binary Arithmetic

Al Overview

A.2 Binary Number System

A.3 Octal Number System

A.4 Hexadecimal Number System
~ A.5 - Problems

Appendix B Answers to Selected
Odd-Numbered Problems

Appendix C Selected PDP-8 Instructions
Glossary
Bibliography

Index

Contents ix

453
455
458
460
460

463
464
470
473
475
479
489
491
511

515

L Querviery

1.1

What are you able to build with your blocks?
Castles and palaces, temples and docks.
Robert Louis Stevenson

The theme of this book is the diversity of levels in the ‘structures
of digital computers and other digital systems. This chapter defines

‘the levels that we will study and provides an overview of the book.

INTRODUCTION

Modern digital computers are complex systems. To understand them,
we will view them as a hierarchy of system levels, as first described
by Bell and Newell (1971). We will consider four basic levels: elec-
tronic circuits, logic, programming, and computer systems. (The logic
level is further divided into three sublevels: combinational logic,
sequential logic, and register-transfer logic.) Since a thorough under-
standing of electronic circuits requires some advanced knowledge of
physics and mathematics, we will ‘concentrate on the other three
levels, which are unique to computers and to digital technology.
The levels nest together in a hierarchy. At each level the system
may be described in terms of appropriate components, structures,
and system behavior. The components at a particular level obey
certain physical or mathematical laws and combine to make struc-
tures. Together, the components and structures determine the behav-
ior of the system at that level. Each level also has a distinct language

_ or languages to describe components and their connections.

2 Overview

TABLE 1.1

HIERARCHY OF SYSTEM LEVELs WITH EXAMPLES
OF STRUCTURES AND COMPONENTS

.

LEvEL STRUCTULES COMPONENTS
Computer sys.t;emS Computers, networks Controls, processors,
: . memories
Programming Programs Instructions, subroutines,

memories, operators

Logic
Register-transfer Circuits—arithmetic Registers, data
unit operators
Sequential Circuits—counters, Flipflope—-RS, JK, T, D
. registers
Combinational Circuits—encoders, Gates—AND, OR, NOT,
’ decoders . NOR, NAND
Electronic Circuit Circuits—gates, Active—transistors,
. multivibrators (flip- voltage sources
flops), amplifiers Passive—resistors,
capacitors, inductors, .
diodes

Table 1.1 shows the system levels with examples of their compo-
nents and structures. Note that structures at one level can become
components at another level. For example, gates and flipflops are
both structures at the electronic circuit level, but gates are compo-
nents at the combinational logic sublevel and flipflops are components
at the sequential logic sublevel.

The purpose of this book is to study each computer level (except
the electronic circuit level) briefly, yet in enough detail to show its
characteristics and importance to computer systems. Because digital
technology is rapidly changing, not all.the levels we will study are
well established or well understood. While the lowest levels have
been organized or codified for several decades, the newer levels—
particularly the register-transfer level and the computer systems
level—change constantly. New levels may yet emerge. In addition,
the levels described here cannot completely describe computer system
behavior, since they exclude mechanical devices, such as card readers,

- teletype terminals, and line printers. We will study such devices
briefly in chapter 10 to see how they interact with other structures
and to improve our knowledge of computer hardware.

1.2

1.3

Overviepw 3

The study of computer systems is similar to the study of human
systems. Humans, too, can be studied at many levels, for example
the anatomical, the neurological, the biochemical, the psychological,
the sociological, and the anthropological, to name just a few. An
attempt to classify such a study would yield a hierarchy in which
some structures at one level, say t.ae biochemical, become components
at another level, say the physiological. In other cases, the hierarchy
is not clear. Just as there are careers in human systems that involve
primarily one level, so there are careers in computer systems that
concentrate on one level, such as programming or logic design. Yet
a knowledge of the impact of one level on the entire system is impor-
tant in order to analyze, design, and use systems successfully.

The rest of this chapter contains brief overviews of system levels.
All the ideas introduced here will be discussed in more detail in later
chapters. Some of the words and concepts may be unfamiliar to you
now but will become familiar as you progress through the book. This
chapter is intended to provide a framework for understanding the
hierarchy of system levels; it is not intended to introduce any level
rigorously. .

ELECTRONIC CIRCUIT LEVEL

The lowest level shown in table 1.1 is the electronic circuit level.
(A lower level might combine electromagnetic theory and quarnitum
mechanics to explain the operation of the components at this level.)
Its components can be passive (such as resistors, capacitors, inductors,
and diodes) or active (such as voltage or current sources and transis-
tors). Circuit behavior is characterized by continuous waveforms of .
voltage and current, which can be described by differential equations.

We will not consider the electronic circuit level in any detail since
it requires a knowledge of circuit analysis and physics beyond that
assumed for this book. However, we will consider how the technologies
chosen to implement electronic circuit design, for example metal- *
oxide-semiconductor (MOS) technology, affect other levels of com-
puter operation.

LOGIC LEVEL

The concept of logic level is unique to digital technology. The preced-
ing electronic circuit level, in contrast, is useful for many technologies.
The -difference between the two levels is most obvious in circuit

4 Overview

behavior. At the logic level, circuit behavior is described by discrete
binary variables that are called 0 and 1, or low and high, regardless
of the exact voltages to which they correspond. At the -electronic
circuit level, circuit behavior is described by continuous waveforms
that require analysis by differential equations, a far more complex
form of mathematics.)

If operation of a logic circuit depends only on the current values
of the inputs, it is called combinational logic. The mathematics
necessary to describe combinational logic is switching algebra. The
components perform logical operations such as logical addition (OR)
and logical multiplication (AND), which are analogous to conven-
tional addition and multiplication. (We will define these operations
precisely in chapter 2.) The components that implement the opera-
tions are connected at their terminals irf much the same way that
electronic components are connected. The signals are considered to
. be discrete 0s or 1s. .

After learning to analyze and design combinational logic circuits
with switching algebra, we will look at some simple map and table
methods for combinational logic. We will also look at integrated
circuits that have several combinational logic circuits on single chips
of silicon. We will consider how integrated circuits have modified
older methods of combinational logic design.

The sequential logic sublevel characterizes logic circuits whose
behavior depends in part on the past history of the circuit. In addition
to the logic components used at the combinational logic sublevel,
the sequential logic sublevel requires memory or delay components,
such as flipflops. A flipflop is a small storage unit whose output can
be either 0 or 1. Difference equations, the discrete analog of the
differential equations used at the electronic circuit level, describe
circuit behavior.

We will study two basic types of sequential logic circuits—registers
and counters. Ordinarily, computers and other digital systems operate
with a basic unit of information called a word. For a given system
a word has a standard number of bits, usually ranging from 4 to
64, where each bit can be either 0 or 1. Registers store information
and usually hold one word, but they can be shorter or longer as
needed. Counters, as their name implies, count computer operations
or time intervals and are basic to the timing and control of a com-
puter.

While both the combinational logic sublevel and the sequential
logic sublevel have been standardized for nearly as long a time as
electronic computers have existed, the last logic sublevel, the regis-
ter-transfer level, is new and uncertain. Its components are registers

1.4

Overview S

and transfer paths between registers. The behavior of a register-
transfer system is represented by the sequence of bit values.
Contents of the registers can be combined by logical operations,
arithmetic operations, or simple transfers. A set of expressions specify
the rules for register transfers. Register-transfer level descriptions
of computers are becoming more common, and a number of register-
transfer languages have been developed. Unfortunately, notation is
not standard. Later we will look at one register-transfer language
and at register-transfer hardware.

PROGRAMMING LEVEL

The programming level may be the most familiar to you since you

- probably have some experience in programming in a high-level lan-

guage such as FORTRAN. This level is unique not only to digital
technology, but even more narrowly, to digital devices with central
processors that interpret a programming language. Some digital de-
vices, such as simple digital voltmeters, do not have central processors;
they have a logic level but not a programming level. As we will see
in chapter 11, a major current trend is to replace digital systems
based solely on logic with digital systems based on micreprocessors,
or small central processors.

We may regard instructions and subroutines as the basic compo-
nents of the programming level since they are the components of
programs. An alternate view is to consider programming level compo-
nents to be memories and operations. Memories store data structures
such as student records. Operations transform the data structures
and produce new data structures. The behavior of the programming
level is the sequence of data values. A program (that is, a sequence
of instructions) prescribes the operations to be performed on given
data structures. A control structure specifies the order of execution
of instructions, allowing for program branching.

The programming level has a hierarchy of sublevels, as shown -in
table 1.2, The lowest sublevel, microprogramming, involves micro-
instructions, which are components of the basic instructions of a com-

‘puter. Machine language programs are written with the basic in-

struction set of the computer and can be expressed as the actual
bit patterns of 1s and Os used by the computer hardware. Since Bit
patterns or numbers are difficult to remember, we often represent
machine language instructions with symbols called mnemonies. For
each instruction both an address and the numerical form of the

. instruction must be specifie® Assembly language is shorthand nota-

tion for machine language that allows mnemonic instead of numeric

8 Overview

TABLE 1.2

HIERARCHY OF LANGUAGE SUBLEVELS OF PROGRAMMING LEVEL

LANGUAGE SUBLEVEL) ExAMPLE

Compiler languages FORTRAN, PL/I, COBOL
Interpreter hnguages BASIC, APL
Assembly language

- Machine language . Unique to eaéh computer

Microprogra_mming languages

instructions, and symbolic instead of numeric addresses. Assembly
language programs are run with the help of a program, called an
assembler, that performs many needed housekeeping functions for
the programmer. : o ,

" The three lowest programming sublevels—microprogramming, ma-
chine, and assembly language—are unique for each computer. In con-
trast - the higher sublevels—interpreter and compiler languages—
can be used on many computers. These two languages differ in the
way they are implemented. Compilers usually translate a source
program written in the compiler language, such as FORTRAN, di-
rectly into an equivalent machine language program which is exe-
cuted. Interpreters usually translate and execute source language
statements, written in an interpreter language such as BASIC, one
at a time.

The programming level differs markedly from the logic level since
it is linguistic rather than physical. It allows us to name things,
to abbreviate, and to interpret instructions, none of which we could
.do at lower levels. Because the programming level differs so from
other levels, people can become expert programmers with little or
. no understanding of logic or electronic circuit behavior.

Most of today’s computer science focuses on the programming level.
This level comprises a hierarchy of language levels and a diversity
of languages that rivals the natural languages of the world. No
universal programming language yet exists, although some notations
for programming languages are becoming standard. This book will
be concerned with programiming primarily at the machine language
and assembly language levels. We will illystrate machine ard assem-
bly lariguage programming with programs for the PDP-8. a simple
minicomputer.

