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Preface

These are the proceedings of the fourth biennial conference in the Intelligent Data
Analysis series. The conference took place in Cascais, Portugal, 13—15 September
2001. The theme of this conference series is the use of computers in intelligent
ways in data analysis, including the exploration of intelligent programs for data
analysis. Data analytic tools continue to develop, driven by the computer revolu-
tion. Methods which would have required unimaginable amounts of computing
power, and which would have taken years to reach a conclusion, can now be
applied with ease and virtually instantly. Such methods are being developed by
a variety of intellectual communities, including statistics, artificial intelligence,
neural networks, machine learning, data mining, and interactive dynamic data
visualization. This conference series seeks to bring together researchers studying
the use of intelligent data analysis in these various disciplines, to stimulate in-
teraction so that each discipline may learn from the others. So as to encourage
such interaction, we deliberately kept the conference to a single track meeting,.
This meant that, of the almost 150 submissions we received, we were able to
select only 23 for oral presentation and 16 for poster presentation. In addition
to these contributed papers, there was a keynote address from Daryl Pregibon,
invited presentations from Katharina Morik, Rolf Backhofen, and Sunil Rao, and
a special ‘data challenge’ session, where researchers described their attempts to
analyse a challenging data set provided by Paul Cohen. This acceptance rate
enabled us to ensure a high quality conference, while also permitting us to pro-
vide good coverage of the various topics subsumed within the general heading
of intelligent data analysis.

We would like to express our thanks and appreciation to everyone involved
in the organization of the meeting and the selection of the papers. It is the
behind-the-scenes efforts which ensure the smooth running and success of any
conference. We would also like to express our gratitude to the sponsors: Fundagéo
para a Ciéncia e a Tecnologia, Ministério da Ciéncia e da Tecnologia, Faculdade
de Ciéncias e Tecnologia, Universidade Nova de Lisboa, Fundacao Calouste Gul-
benkian and IPE Investimentos e Participacdes Empresariais, S.A.

September 2001 Frank Hoffmann
David J. Hand

Niall Adams

Gabriela Guimaraes

Doug Fisher
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Feature Characterization in Scientific Datasets

Elizabeth Bradley,! Nancy Collins,'* and W. Philip Kegelmeyer?

' University of Colorado, Department of Computer Science, Boulder, CO 80309-0430
1izb,co0llinn@cs.colorado.edu,
? Sandia National Laboratories, P.O. Box 969, MS 9951, Livermore, CA, 94551-0969
wpk@ca.sandia.gov

Abstract. We describe a preliminary implementation of a data analysis
tool that can characterize features in large scientific datasets. There are
two primary challenges in making such a tool both general and practi-
cal: first, the definition of an interesting feature changes from domain
to domain; second, scientific data varies greatly in format and structure.
Our solution uses a hierarchical feature ontology that contains a base
layer of objects that violate basic continuity and smoothness assump-
tions, and layers of higher-order objects that violate the physical laws
of specific domains. Our implementation exploits the metadata facilities
of the SAF data access libraries in order to combine basic mathematics
subroutines smoothly and handle data format translation problems auto-
matically. We demonstrate the results on real-world data from deployed
simulators.

1 Introduction

Currently, the rate at which simulation data can be generated far outstrips the
rate at which scientists can inspect and analyze it. 3D visualization techniques
provide a partial solution to this problem, allowing an expert to scan large
data sets, identifying and classifying important features and zeroing in on areas
that require a closer look. Proficiency in this type of analysis, however, requires
significant training in a variety of disciplines. An analyst must be familiar with
domain science, numerical simulation, visualization methods, data formats, and
the details of how to move data across heterogeneous computation and memory
networks, among other things. At the same time, the sheer volume of these
data sets makes this analysis task not only arduous, but also highly repetitive.
A logical next step is to automate the feature recognition and characterization
process so scientists can spend their time analyzing the science behind promising
or unusual regions in their data, rather than wading through the mechanistic
details of the data analysis. This paper is a preliminary report on a tool that
does so.

General definitions of features are remarkably hard to phrase; most of those
in the literature fall back upon ill-defined words like “unusual” or “interesting” or

" Supported by the DOE ASCI program through a Level 3 grant from Sandia National
Laboratories, and a Packard Fellowship in Science and Engineering.

F. Hoffmann et al. (Eds.): IDA 2001, LNCS 2189, pp. 1-12, 2001.
© Springer-Verlag Berlin Heidelberg 2001



2 Elizabeth Bradley, Nancy Collins, and W. Philip Kegelmeyer

“coherent.” Features are often far easier to recognize than to describe, and they
are also highly domain-dependent. The structures on which an expert analyst
chooses to focus — as well as the manner in which he or she reasons about them
— necessarily depend upon the physics that is involved, as well as upon the
nature of the investigation. Meteorologists and oceanographers are interested
in storms and gyres, while astrophysicists search for galaxies and pulsars, and
molecular biologists classify parts of molecules as alpha-helices and beta-sheets.
Data types vary — pressure, temperature, velocity, vorticity, etc. — and a critical
part of the analyst’s expert knowledge is knowing which features appear in what
data fields.

In this paper, we describe a general-purpose feature characterization tool and
validate it with several specific instances of problems in one particular field: finite
element analysis data from computer simulations of solid mechanics problems.
One of our goals is to produce a practical, useful tool, so we work with data from
deployed simulators, in a real-world format: ASCI's SAF, a lingua franca used by
several of the US national labs to read and write data files for large simulation
projects. This choice raised some interoperability issues that are interesting from
an IDA standpoint, as discussed in section 2 below. The SAF interface provides
access to a geometric description of a computational mesh, including the spatial
positions of the mesh points (generally zy or zyz) and the type of connectivity,
such as triangles or quads, plus information about the physics variables, such as
temperature or velocity. Given such a snapshot, our goal is to characterize the
features therein and generate a meaningful report. We began by working closely
with domain scientists to identify a simple ontology' of distinctive coherent
structures that help them understand and evaluate the dynamics of the problem
at hand. In finite-element applications, as in many others, there are two kinds
of features that are of particular interest to us:

— those that violate the continuity and smoothness assumptions that are inher-
ent in both the laws of physics and of numerical simulation: spikes, cracks,
tears, wrinkles, etc. — either in the mesh geometry or in the physics vari-
ables.

— those that violate higher-level physical laws, such as the requirement for nor-
mal forces to be equal and opposite when two surfaces meet (such violations
are referred to as “contact problems”).

Note that we are assuming that expert users can describe these features math-
ematically; many of the alternate approaches to automated feature detection
that are described in section 5 do not make this assumption. The knowledge
engineering process is described in section 3.1 and the algorithms that we use
to encapsulate the resulting characterizations, which rely on fairly basic mathe-
matics, are described in section 3.2. We have tested these algorithms on roughly
a half-dozen data sets; the results are summarized in section 4.

! Formally, an ontology seeks to distill the most basic concepts of a system down into
a set of well defined nouns and verbs (objects and operators) that support effective
reasoning about the system.
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2 Data Formats and Issues

DMF[15] is a joint interoperability project involving several US national labs. Its
goal is to coordinate the many heterogeneous data handling libraries and anal-
ysis tools that are used by these organizations, and to produce standards and
libraries that will allow others to exploit the results. This project is motivated
by the need to perform simulations at the system level, which requires formerly
independent programs from various disciplines to exchange data smoothly. The
attendant interoperability problems are exacerbated by the growing sophistica-
tion and complexity of these tools, which make it more difficult to adapt them
to new data formats, particularly if the new format is richer than the old. The
specific DMF data interface that we use, called SAF[11], exploits metadata —
that is, data about the data — to solve these problems. Used properly, meta-
data can make a dataset self-describing. SAF, for example, captures not only
the data values, but also the geometry and topology of the computational grid,
the interpolation method used inside each computational element, and the rela-
tionships between various subsets of the data, among other things. Its interface
routines can translate between different data formats automatically, which con-
fers tremendous leverage upon tools that use it. They need only handle one type
of data and specify it in their metadata; SAF will perform any necessary trans-
lation. In our project, this is important in both input and output. Not only must
we handle different kinds of data, but we must also structure and format the
results in appropriate ways. As discussed at length in the scientific visualization
literature, different users need and want different data types and formats, so re-
porting facilities must be flexible. Moreover, the consumer of the data might not
be a person, but rather another computer tool in a longer processing pipeline.
For example, output generated by the characterization routines developed in this
paper might be turned into a simple ascii report or formatted into an html page
for viewing with a browser by a human expert, and simultaneously fed to a visu-
alization tool for automatic dataset selection and viewpoint positioning. For all
of these reasons, it is critical that data be stored in a format that supports the
generation and use of metadata, and SAF is designed for exactly this purpose.
Metadata is a much broader research area, and SAF was not the first data
model to incorporate and use it. Previous efforts included PDBIib, FITS, HDF,
netCDF, VisAD, and DX, among others(4,16,5,8,9] — data formats that enabled
analysis tools to reason about metadata in order to handle the regular data in an
appropriate manner. While metadata facilities are of obvious utility to the IDA
process, they are also somewhat of a Pandora’s Box; as simulation tools increase
in complexity, effective analysis of their results will require a corresponding in-
crease in the structure, amount, and complexity of the metadata. This raises
a host of hard and interesting ontology problems, as well as the predictable
memory and speed issues, which are beyond the scope of the current paper.
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The SAF libraries are currently in alpha-test release?. Because of this, few
existing simulation, analysis, and visualization tools understand SAF’s native
interface. Our early development prototypes, for instance, used the SAF library
directly for data access, but had to convert to the OpenDX file format for visu-
alization: the very kind of translation that SAF is intended to obviate. Because
visualization is so critical to data analysis, there has been some recent progress
in adapting existing visualization tools to parse SAF input. In the first stages
of our project, however, such tools did not exist, so we used OpenDX for visual-
ization. We recently began converting to a SAF-aware visualization tool called
EnSight[1], but this has not been without problems. Data interface libraries are
subject to various chicken-and-egg growing pains. The tools need not understand
a format until an interesting corpus of data exists in that format; scientists are
understandably unwilling to produce data in a format for which no analysis tools
exist. Intelligent data analysis tools that take care of low-level interoperability
details can remove many barriers from this process.

3 Intelligent Analysis of Simulation Data

3.1 Knowledge Engineering

In order to automate the feature characterization process, we first needed to un-
derstand how human experts perform the analysis. We spent several days with
various project analysts at Sandia National Laboratories, observing as they used
existing tools on different kinds of data. We focused in on what they found im-
portant, how they identified and described those features, how they reasoned
about which data fields to examine for a given stage of the process, and how
the entire process changed if they were trying to prove or disprove a particular
hypothesis. Most of the features of interest to these experts, we found, are clued
from local geometry of the simulation mesh; inverted elements with non-positive
volume, spikes, wrinkles, dimples, and so on. A smaller set of features of interest
are extrema in the physics variables: hot spots and the like. We used this infor-
mation to specify a simple ontology: that is, a set of canonical features (spikes,
tears, cracks, etc.), together with mathematical descriptions of each — the sta-
tistical, geometric, and topological properties that define them. We also studied
how the experts wrote up, reported, and used their results.

The Sandia analysts view the mechanical modeling process in two stages.
The first is model debugging, wherein they ensure that the initial grid is sound,
that the coupling is specified correctly between various parts of the model, and
that the modeling code itself is operating correctly. The second is the actual sim-
ulation, where they examine the data for interesting physical effects: vibrational
modes, areas that exceed the accepted stress tolerances, etc. We found that fea-
tures play important roles in both phases, and that the sets of features actually

2 We are a designated alpha-test group, and a secondary goal of this project is to
provide feedback to the DMF developers, based on our experiences in designing an
intelligent data analysis tool around this format.
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overlapped. A spike in the results, for instance, can indicate either a numerical
failure or a real (and interesting) physical effect. In some cases, reasoning about
features let analysts identify model errors that were undetectable by traditional
numerical tests like overflow, divide-by-zero, etc. One scientist described a sim-
ulation of an automobile engine compartment, including the front bumper. Due
to a numerically innocuous error, one of the grid points moved to a location well
beyond the back end of the entire car. This obviously non-physical situation -—
which was immediately visible to the analyst as a feature — flagged the model
as faulty, even though no numerical fault occurred.

Note that features can involve the mesh coordinates, the physics variables,
and sometimes both. Vertical relief, for instance, is a property of surface geom-
etry, not the value of the physics variables upon that surface. Conversely, cal-
culation of the highest temperature on a surface depends solely on the physics
variables. Often, analysts are interested in features that involve both: say, the
temperature or wind speed at the highest point on the landscape, or the position
of the hottest point. Often, too, their underlying assumptions about geometry
and about physics are similar, which can lead to some terminology confusion. A
spike in temperature and a spike on the surface are similar in that both violate
smoothness assumptions, but the mathematics of their characterization is quite
different. This is actually a symptom of a deeper and more interesting property
of features: like data analysis itself, they are hierarchical. All surfaces, whether
numerical or physical, are generally continuous and smooth, so tears and spikes
are likely to be considered to be features in any domain. If one knows more
about the physics of the problem, other features become interesting as well. In
contact problems, for instance — where two surfaces touch one another — the
normal forces at the intersection of the two surfaces should be equal and oppo-
site and surfaces should certainly not interpenetrate. Violations of these physical
realities are interesting features. To capture these layers of meaning, our feature
ontology is hierarchical. It contains a baseline set of features that rest on assump-
tions that are true of all physical systems, together with layers of higher-order
features that are specific to individual domains (and sub-domains and so on).
Currently, we have finished implementing two such layers: the baseline one men-
tioned above (spikes et al.) and a contact-problem one, which defines deviation
from equal-and-opposite as a feature. Both are demonstrated in section 4.

3.2 Algorithms

Given the feature ontology described in the previous section, our next task was
to develop algorithms that could find instances of those features in DMF data
snapshots and generate meaningful reports about their characteristics. In order
to make our work easily extensible, we structured the overall design so as to
provide a general-purpose framework into which characterization routines spe-
cific to the features of a given domain can be easily installed. In particular, we
provide several basic building-block tools that compute important statistical,
geometrical, and topological information — about the mesh itself and about the
values of the physics variables that are associated with each point in the mesh.
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Their results are stored using the SAF library format, complete with metadata
that allow them to be combined in different ways to assess a wide variety of
features in a range of domains. Often, there is more than one way to find a
single feature; a surface spike, for instance, can be characterized using statistics
(a point that is several o away from the mean) or geometry (a point where the
slope changes rapidly).

Our current set of basic building blocks is fairly straightforward:

— normals (), which takes a DMF dataset and computes the unit-length normal
vector to each mesh element.

— topological-neighbors(), which takes a DMF dataset and an individual
mesh element m and returns a list of mesh elements that share an edge or a
vertex with m.

— geometric-neighbors(), which takes a DMF dataset, an individual mesh
element m and a radius r, and returns a list of mesh elements whose vertices
fall entirely within r of the centroid of m.

— statistics(), which takes a DMF dataset and a specification of one vari-
able (one of the mesh coordinates or physics variables) and computes the
maximum, minimum, mean, and standard deviation of its values.

— displacements(), which takes a DMF dataset, finds all neighboring® pairs
of vertices, measures the xyz distance between them, and reports the maxi-
mum, minimum, mean, and standard deviation of those distances

In addition, we provide various vector calculus facilities (e.g., dot products) and
distance metric routines.

As an example of how these tools work, consider Fig. 1. The vectors com-
puted by normals() are shown emanating from the center of each mesh face.
In a regular mesh, finding topological neighbors could be trivial. SAF, how-

Fig.1. 3D surface mesh examples, showing the vectors computed by the
normals() function.

3 Topologically neighboring
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ever, is designed to be able to represent irregular and adaptive meshes as well,
so the current version of SAF only provides neighbor information implicitly.
For this reason, we preprocess the DMF data at the beginning of the char-
acterization run and place it in a data structure that makes the topological
information explicit. Qur current design maintains a single list of vertices, in-
cluding zyz position and the values of any associated physics variables. Three
other lists point into this vertex list — a face list, an edge list, and a normal
list — making it easy to look for shared edges or vertices and deduce neighbor
relationships. In the examples in Fig. 1, each triangle has three “face neigh-
bors” and at least three other “vertex neighbors,” all of which are returned by
topological-neighbors. The geometrical-neighbors function is a bit more
complicated; it calls topological-neighbors, measures the Euclidean distances
between the vertices of the resulting triangles and the centroid of the original
element, discards any element whose vertices do not all fall within the spec-
ified distance, and iteratively expands on the others. The statistics() and
displacements() routines use simple traditional methods. The left-hand sur-
face in Fig. 1, for instance, is completely flat, with the exception of the bump
in the foreground, and the statistics() results reflect the appropriate mean
height of the surface and a very small standard deviation, The right-hand sur-
face fluctuates somewhat, so the standard deviation is larger. In both cases, the
displacements () results would likely be uninformative because the edge lengths
of the elements are fairly uniform.

There are a variety of ways, both obvious and subtle, to improve on the
toolset described above. We are currently focusing on methods from computa-
tional geometry{12] (e.g., Delaunay triangulation) and computational topology,
such as the o-shape[7], and we have developed the theoretical framework and
some preliminary implementations of these ideas(13,14]. Since features are often
easier to recognize than to describe, we are also exploring the use of machine
learning techniques to discover good values for the heuristic parameters that are
embedded in these computational geometry and topology algorithms.

4 Results and Evaluation

We have done preliminary evaluations of the algorithms described in the previous
section using half a dozen datasets. For space reasons, only two of those datasets
are discussed here; please see our website? for further results, as well as color
versions of all images in this paper. The first dataset, termed irregular-with-
spike, is shown in Fig. 2. It consists simply of an irregular surface mesh; no
physics variables are involved. Such a dataset might, for instance, represent the
surface of a mechanical part. As rendered, this surface contains an obvious fea-
ture — a vertical spike — to which the eye is immediately drawn. Such a feature
may be meaningful for many domain-dependent and -independent reasons: as an
indicator of numerical problems or anomalies in the physics models, or perhaps

4 http://www.cs.colorado.edu/~1izb/features.html



