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Preface

To the second edition

Much has changed since the first edition of this book went to press in 1986. The elec-
tric utility industry in the United States has undergone major changes in its structure
and operating practices. In many parts of the country, the monopolistic and regu-
lated vertically integrated utility system is being replaced by a (partially) deregu-
lated multi-layered system open to competition and other market forces. The
second edition includes material which reflects these changes and deals with issues re-
lated to the new environment.

In addition, a number of thoughtful suggestions by professors and students who
have used the first edition have been incorporated. While continuing to stress fun-
damentals, there is somewhat more emphasis on industry practice and on computer
applications.

The many changes in the second edition include the following: The chapters
have been reordered to provide a more systematic development of the material. A
new section on determining transmission line parameters from manufacturers’ ta-
bles has been introduced in Chapter 3. In the same chapter, a more complete and ac-
curate description of transmission line impedance parameters of transmission lines
with ground returns has been provided. Chapter 9 is an entirely new chapter on the
subject of network matrices. The topic of matrix factorization and its applications to
matrix inversion is included. Also included is the modern approach of determining
only needed elements of the impedance matrix. Chapter 10 on power flow solutions
has been expanded to describe the modifications needed when practical limits are
encountered. In Chapter 11, titled “Automatic Generation Control and the New
Market Environment”, some ideas currently being utilized for power system opera-
tion and control are introduced. Chapter 12 on unbalanced system operation and
fault analysis has been substantially revised and includes new material describing in-
dustry practice.

A salient feature of the second edition is a running design problem that is first
introduced in Chapter 3 and continues in each successive chapter as relevant new
concepts are presented. The design problem is computer oriented; the student may
use available software, or may develop software using MATLAB®. These design ex-
amples are involved and are ideally suited for group projects.



Xii Preface

The material in the text has expanded to the point where it seems clear that
two semesters would be required to cover the material. If this much time is not avail-
able, however, there are alternative pathways through the text. Chapters 7, 8,and 11
might be left out without seriously affecting the coherency of the remaining materi-
al. For the student with some background in energy conversion and electrical ma-
chines, Chapters 1, 2, the first part of Chapter 5, and Chapter 6 might be excluded. If
pressed for time, Chapter 10 and much of the material at the ends of Chapters 11,12,
13, and 14 could be left out without affecting continuity.

For updates, information regarding available Web sites related to power sys-
tem analysis and power issues, as well as additional resources please visit out Web site
at hitp://www.prenhall.com/bergen/vittal.

We would like to express our appreciation and thanks to the following review-
ers for their helpful comments and suggestions: Professor Ali Abur, Texas A&M Uni-
versity, Professor Miroslav Begovic, Georgia Institute of Technology, Professor Brian
K. Johnson, University of Idaho, and Professor Arun G. Phadke, Virginia Polytechnic
Institute and State University.

There are many others whose contributions we would like to acknowledge.
Among these we would particularly like to thank our colleagues Professors M. A.
Pai, S.S. Venkata, G. B. Shablé, K. C. Kruempel, and J. D. McCalley for their valuable
advice and comments. We would also like to recognize our students who helped in de-
veloping some of the new examples.

Finally, we would like to express our sincere thanks to Sunanda Vittal for her
careful proofreading of the book.
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Background

1.0 INTRODUCTION

In this chapter we give a simplified description of a power system. The system con-
sists of power sources, called generating plants (or generators), power end users, called
loads, and a transmission and distribution network that connects them. Most com-
monly the generating plants convert energy from fossil or nuclear fuels, or from falling
water, into electrical energy.

1.1 ELECTRIC ENERGY

Electricity is only one of many forms of energy used in industry, homes, businesses, and
transportation. It has many desirable features; it is clean (particularly at the point of
use), convenient, relatively easy to transfer from point of source to point of use, and
highly flexible in its use. In some cases it is an irreplaceable source of energy.

Figure 1.1 is a useful summary of electric energy sources and their transition to
end uses for the United States in 1996. The basic energy sources are shown on the
left. The end uses of the electricity are shown on the right. Only about one-third of
the resource energy is converted into electricity; about two-thirds is lost as “waste
heat.” In some cases this heat is not wasted. It can be used for heating homes and
offices or for some industrial processes.

In Figure 1.1, the T & D losses are transmission and distribution losses (almost
10% of the net generation of electricity). Also, note the significant amount of non-
utility energy generated in 1996. Changes in government energy policy have en-
couraged this growth. In the period from 1990 to 1995, nonutility power generation
grew by 47%.

Figure 1.2 provides more detail regarding the major sources of utility-
generated electrical energy and some trends in their relative importance. It can be
seen that most of the production has been in conventional steam plants. Conven-
tional steam refers to steam generation by burning coal, petroleum, or gas. In 1996
approximately 3000 billion kilowatthours of electricity were produced. Of this, coal

1



2 Background  Chap. 1

Electric utilities
U.S. electricity flow, 1996

(quadrillion Btu)

Coal 17.91

Conversion Plantuse T&D
losses of electricity losses
Energy
______ consumed  21.08 0.55 0.99 Exported

3 electricil
Natural gas to generate s ty Residential

__280__ electricity . 3.68
Petroleum 0.73  32.13 g :
N‘;gfvaére’;ic ;n c Gross Net genelja'.-ion Retail s‘ales of ial 3.03

T T T T generation of  of electricity electricity to Commercial >

Hydroelectric

end users 10.52

electricity 11.05 10.50

power 3.39 Industrial 3.47

Other 0.34

Deliveries from

and other NP Unaccounted
t1
0.13 electric utilities for 0.07
Nonutility power producers HoP X
o, lities Deliveries to other end users 0.06

—

Energy consumed for C a‘\é'\“
industrial processes/ Qto .
products and to produce ‘e
steam to generate electricity Gross generation 1.77

Facility use (including losses) 0.88

Figure 1.1 U.S. electricity supply and demand. (From Annual Energy
Review 1996, U.S. Department of Energy.)

accounted for approximately 56 %, petroleum 2%, natural gas 8% (totaling 66% for
conventional steam), hydropower 11%, nuclear power 22%, and others, including gas
turbines, about 2%. Note that nuclear and geothermal power plants also generate
steam but not by burning fossil fuels.

The units used in Figure 1.1 are quadrillion Btu (10%, or quads), while those in
Figure 1.2 are in billion kilowatthours (or 10° watthours or gigawatthours). In at-
tempting to align the figures, we can use the conversion factor 1 watt = 3.413 Btu/hr.

Turning to the growth in utility electricity production, we see in Figure 1.2 an
almost exponential growth rate until about 1973. Until that time electricity use dou-
bled every 10 years or so. Subsequently, the growth rate dropped, at first reflecting
the general slowdown of worldwide economic growth precipitated in large part by the
oil crisis of 1973 and later by an increasing awareness of the cost-effectiveness of en-
ergy conservation.

Figure 1.3 shows the growth in installed utility-generating capability in the Unit-
ed States. In 1996, of the total installed generating capability of approximately 710
million kilowatts, some 63% was conventional (fossil fuel) steam, 14% was hy-
dropower, 14% was nuclear, 8% was gas turbine, and others totaled about 1%. Com-
paring these with the production figures given earlier, we see great differences in the
utilization rates of the various sources. Nuclear power has the highest rate. Gas

gl e
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Sec. 1.1 Electric Energy

Bllion kilowatthours

3000 — 3000
Gas turbine,
internal combustion,
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Figure 1.2 Electric utility energy production (United States). (From
Annual Energy Review 1996, U.S. Department of Energy.)

turbines and internal combustion engines are among the lowest in the rate of uti-
lization. We will discuss the reasons in a moment.

First, it is interesting to calculate an overall utilization factor for 1996. Sup-
pose that it had been possible to utilize the 710 million kilowatt capability full time.
Then the plants would have produced 710 X 10° X 8760 = 6220 X 10'2 watthours
in 1996. They actually produced 3078 X 10'? watthours. Thus the annual capabili-
ty factor or load factor was 3078/6220 = 0.49 or 49%. Why isn’t the figure higher?

There are two main reasons. The first is that generating units are not always
available for service. There is downtime because of maintenance and other sched-
uled outages; there are also forced outages because of equipment failures. The avail-
ability of fossil-fuel steam turbine units ranges from about 80% to about 92%.

The second reason involves a characteristic of the load. While there must be
enough generating capability available to meet the requirements of the peak-load
demand, the load is variable, with daily, weekly, and seasonal variations, and thus has
alower average value. The daily variations are roughly cyclic with a minimum value
(the base load) typically less than one-half of the peak value. A typical daily load
curve for a utility is shown in Figure 1.4. The (weekly) capability factor for this par-
ticular utility is seen to be approximately 65%.

3
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Million kilowatts Million kilowatts
700+~ Internal combustion, =700
gas turbine,
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wind and solar, etc.
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400 400
300 ) 300
Conventional steam ’
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100 100 i
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Figure 1.3 Electric utility generating capability in the United States in the
summer. (From Annual Energy Review, 1996, U.S. Department of Energy.)

In meeting the varying load requirements, economic considerations make it de-
sirable to utilize plants fully with low (incremental) fuel costs while avoiding the use
of plants with high fuel costs. This, in part, explains the use of nuclear plants for base-
load service and gas turbines for peaking-power service; the different rates of uti-
lization of these sources were noted earlier.

Finally, it is interesting to reduce the enormous numbers describing produc-
tion and generating capability to human terms. In 1996 the U.S. population was

100

-

80
60
40

20 |~
0 | | ! ] ] ! Figure 1.4 Daily load output
Mon. Tues. Wed. Thur. Fri. Sat. Sun. [t;ypica| week).

System load (% of capability)




Sec. 1.2 Fossil-Fuel Plant 5

approximately 265 million. Thus, there was a generating capability of approximate-
ly 710/265 = 2.68 kW per person. Using the figure 0.49 for the capability (or load)
factor, this translates into an average use of energy at the rate 1.3 kW per person.
The latter figure is easy to remember and gives an appreciation of the rate of elec-
tricity consumption in the United States.

In the next few sections we consider some typical power plant sources of ener-
gy: fossil-fuel steam plants, nuclear plants, and hydroelectric plants. Space does
not permit a detailed physical description. For more details, see a standard
reference such as the McGraw-Hill Encyclopedia of Energy. The Web site www.
powerlearn.ee.iastate.edu offers pictures of various items of power equipment. If
you can arrange it, there is nothing better than a visit to a power plant.

1.2 FOSSIL-FUEL PLANT

Coal
Hopper

Coal

Pulverizer

In a fossil-fuel plant, coal, oil, or natural gas is burned in a furnace. The combustion
produces hot water, which is converted to steam, and the steam drives a turbine, which
is mechanically coupled to an electric generator. A schematic diagram of a typical
coal-fired plant is shown in Figure 1.5. In brief, the operation of the plant is as fol-
lows: Coal is taken from storage and fed to a pulverizer (or mill), mixed with pre-
heated air, and blown into the furnace, where it is burned.

The furnace contains a complex of tubes and drums, called a boiler, through
which water is pumped; the temperature of the water rises in the process until the

Combustion gases
to precipitator
and stack

Stop
valve

Steam

L. Step-up
Circuit  transformer
breaker
Control  11-30 kV
valve

H110-765 kV

Boiler

Transmission
system

Burner

r_ Condenser

Furnace 4 Feed
water

Cooling
tower

Preheated
air

Feed water
pump

Figure 1.5 Coalfired power station (schematic).
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water evaporates into steam. The steam passes on to the turbine, while the combus-
tion gases (flue gases) are passed through mechanical and electrostatic precipitators,
which remove upward of 99% of the solid particles (ash) before being released to the
chimney or stack.

The unit just described, with pulverized coal, air, and water as an input and
steam as a useful output, is variously called a steam-generating unit, or furnace, or boil-
er. When the combustion process is under consideration, the term furnace is usual-
ly used, while the term boiler is more frequently used when the water-steam cycle is
under consideration. The steam, at a typical pressure of 3500 psi and a temperature
of 1050°F, is supplied through control and stop (shutoff) valves to the steam turbine.
The control valve permits the output of the turbine-generator unit (or turbogenera-
tor) to be varied by adjusting steam flow. The stop valve has a protective function;
it is normally fully open but can be “tripped” shut to prevent overspeed of the
turbine-generator unit if the electrical output drops suddenly (due to circuit-
breaker action) and the control valve does not close.

Figure 1.5 suggests a single-stage turbine, but in practice a more complex multi-
stage arrangement is used to achieve relatively high thermal efficiencies. A repre-
sentative arrangement is shown in Figure 1.6. Here, four turbines are mechanically
coupled in tandem and the steam cycle is complex. In rough outline, high-pressure
steam from the boiler (superheater) enters the high-pressure (HP) turbine. Upon
leaving the HP turbine, the steam is returned to a section of the boiler (reheater) and
then directed to the intermediate-pressure (IP) turbine. Leaving the IP turbine,
steam (at lower pressure and much expanded) is directed to the two low-pressure
(LP) turbines. The exhaust steam from the LP turbines is cooled in a heat exchang-
er called a condenser and, as feedwater, is reheated (with steam extracted from the
turbines) and pumped back to the boiler.

Finally, we get to the electric generator itself. The turbine turns the rotor of
the electric generator in whose stator are embedded three (phase) windings. In the
process mechanical power from the turbine drive is converted to three-phase alter-
nating current at voltages in the range from 11 to 30 kV line to line at a frequency of
60 Hz in the United States. The voltage is usually “stepped up” by transformers for
efficient transmission to remote load centers.

A generator (also called an alternator or synchronous generator) is shown in
longitudinal cross section in Figure 1.7; the transverse cross section is approximate-
ly round. The rotor is called round or cylindrical or smooth. We note that steam-
driven turbine generators are usually two pole or four pole, turning at 3600 Ipm or
1800 rpm, respectively, corresponding to 60 Hz. The high speeds are needed to
achieve high steam turbine efficiencies. At these rotation rates, high centrifugal forces
limit rotor diameters to about 3.5 ft for two-pole and 7 ft for four-pole machines.

The average power ratings of the turbine-generator units we have been de-
scribing have been increasing, since the 1960s, from about 300 MW to about 600 MW,
with maximum sizes up to about 1300 MW. Increased ratings are accompanied by in-
creased rotor and stator size, and with rotor diameters limited by centrifugal forces,
the rotor lengths have been increasing. Thus, in the larger sizes, the rotor lengths




