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PREFACE

The scope of the Intersociety Energy Conversion Engineering Conference (IECEC) series
has grown from a straightforward treatment of energy conversion engineering to a broad in-
volvement in all aspects of energy systems, including primary resource processing, utilization
and environrental issues in addition to conversion and storage. The other notable trend has
been toward increased international participation and, as the papers in this volume attest,
IECEC-89 can truly claim to be an international forum on energy engineering with a significant
proportion of the papers being presented being from beyond the confines of the United States.
It is a pafticular pleasure to include, for the first time, a sizeable contribution from the USSR.

These developments are indeed appropriate for energy conversion engineering has to be
undertaken within the broader context of energy systems and energy issues which are not
constrained by national boundaries. The increasing and proper concern for the impact of energy
systems not only locally but also globally is particularly reflected in the nearly 500 papers ap-
pearing in a Proceedings which has now grown to six volumes. In these, the reader will find
a comprehensive coverage of recent work on energy systems and technologies relevant to
the expected conditions of the 1990’s and beyond. The international character of IECEC-89
shows not just through participation from many couhtries but the large measure of common
ground evident in the contributions made by the many national and international organizations
involved in the energy engineering field.

The organization of this large amount of interrelated material poses considerable challenges
which have been met in the first instance by dividing the Conference and, by extension, the
Proceedings, into a number of major topical areas. From a narrow applications viewpoint, it
is tempting to view aerospace and terrestrial energy system issues separately since they

generally involve meeting different criteria. This has not been done in the present Conference

in large measure becau:;e an |ECEC objective is to find and emphasize points of commonality.
Accordingly, a blend of interests will be found throughout, as for example, in Volume 2 devoted
to energy conversion technologies where space and terrestrial photovoltaics are grouped
together. )

To facilitate use of the volumes, the Table of Contents is repeated in each Volume and an

author Index appears in Volume 6. In addition, the now well-established feature of IECEC, the -

SAE cumulative index for the past four years is also included in Volume 6. This may be used
to locate recent related work reported at the IECEC and, in due course, it will be updated to
include the current Conference.

The task of preparing these Proceedings has only been possible through the unstinting efforts
of the Program Committee, Session Organizers and the IECEC-89 staff whose many contribu-
tions are gratefully acknowledged by the Editors. In fairness to other technologies in which
the Institute of Electrical and Electronics Engineers is prominently involved, the critical role
of computers, FAX machines and other aspects of modern communications technology in
permitting the assembly of this body of material also deserves recognition. B

William D. Jackson, Editor
Dorothy A. Hull, Associate Editor
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ABSTRACT

In a study for the NASA Office of Exploration. photo-
voltaic and nuclear surface power systems were examined
at the 20 to 100 kW power level range for use at a
human-tended lunar astronomical observatory, and esti-
mates of the power system masses were made. One Sys-
tem, consisting of an SP-100 thermoelectric nuclear
power supply integrated with a lunar lander, is recom-
mended for further study due to its low system mass, po-
tential for modular growth, and applicability to other
surface power missions, particularly in the Martian
system.

INTRODUCTION

The emplacement of a human-tended astronomical
observatory on the far side of the Moon is a viable,
low-risk NASA mission option. Such a mission would
require far fewer resources than a mission to Mars or a
permanently manned lunar base, yet it would provide val-
uable scientific information while continuing to establish
and promote an increased manned presence beyond Earth
orbit.[1)

NASA is currently defining power requirements and
configurations for missions such as the lunar observa-
tory. An important figure of merit useful in selecting ap-
propriate power system options is the system mass, al-
though the least massive power system may not necessar-
ily be appropriate for a particular application. Not only
is it more expensive to launch more massive systems,
they may not be feasible with near-term or projected
transportation capability.

This study, originally performed for NASA's Office
of Exploration (OEXP), compares the mass estimates of
photovoltaic (PV) power systems with those of nuclear
power systems for the establishment and operation of a
far-side lunar observatory. The power required to oper-
ate the lunar observatory was not precisely defined by
OEXP but was baselined in the many tens of kilowatts
range. For that reason mass estimates were calculated
for various power systems for the operation of the observ-
atory in the 20- to 100-kW, power level range. Power
for the construction of the observatory was assumed to
be 20 kWe, the minimum power value of the operational
observatory. Incorporation of the construction power sys—
tem into the observatory power system was considered
for each case.

Three PV systems employing gaseous reactant
(hydrogen/oxygen (H2/03)), regenerative fuel cell (RFC)
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energy storage were examined. Also studied was an ad-

vanced. low mass PV concept using cryogenic H+/0y RFC
storage. Two nuclear reactor power system concepts
based on SP-100 reactor technology were considered:

one with free-piston Stirling cycle dynamic energy con-
version and the other using SP-100 technology thermo-
electric static energy conversion,

BACKGROUND

The NASA Office of Exploration is responsible for
providing “recommendations and viable alternatives for
an early 1990's national decision on a focused program of
human exploration of the solar system” [2]. The OEXP is
also responsible for making recommendations to the agen-
cy regarding exploration policy and technical develop-
ment that will affect the options available in the early
1990's. To develop these alternatives and options, cycles
of case studies are being performed to distill the most
logical and representative set of exploration scenarios.
In the 1988 cycle of case studies, a scenario was studied
wherein a moderately sophisticated complement of scien-
tific observational instrumentation would be emplaced
and operated on the far side of the Moon. The ground
rules for this case study were that the setup of the ob-
servatory be accomplished over a 2-year period beginning
in the year 2000 and that one cargo and crew mission per
year be sent [3]. Crew stay times for construction and
maintenance were base lined at 14 days per trip or less.
Since the lunar observatory would be operating unattend-
ed for long periods, the power system selected must show
high reliability and autonomy.

It was determined that two 14-day stays may not be
sufficient to construct both the power system and the ob-
servatory. Therefore, it was decided that all power sys-
tems considered in this study would be capable of provid-
ing continuous construction power through the lunar
night. This is beneficial in several ways. First, the lunar
observatory requires continuous day/night operational
power. By integrating the construction power system
into the operational power svstem when the construction
phase is complete and upgrading if necessary, this
requirement for the operational power system is satis—
fied. Second, agditional, albeit reduced, construction ac-
tivity would be possible during the lunar night, bringing
the number of useful construction days through the lunar
day/night/day cycle (i.e., one and one-half lunar synodic
periods) to just over 43 days. Finally, by allowing a single
crew to stay through this period, at least one launch
would be saved. The benefits of extending the crew
stay-time through the lunar night would seem to out-
weigh the penalties of increased mass and other mission
requirements (4], » )

U.S. Government work not protected by U.S, copyright. -



CANDIDATE SYSTEMS

PV Systems with Gaseous Reactant RFC Storage

In this study, three PV solar cell array technologies
with gaseous reactant RFC energy storage systems were
considered for the operational observatory power sys-
tem: amorphous silicon (a-Si), gallium arsenide (GaAs),
and a hybrid a-Si/GaAs PV system.

The a-Si PV system consists of a-Si solar cells on a
flexible array. These arrays are rolled flat onto the lunar
surface and connected to a power management and distri-
bution bus to provide either AC or DC power, as required
(Fig. 1). These planar arrays would require no additional
structure and could be deployed in a relatively short
time. Additional time would be required to set up the
RFC's that will supply power to the observatory through
the 354-hr lunar night. Because these arrays lie flat on
the surface and do not have a mechanism to follow the
Sun, incident insolation will fall obliquely on the cells ex-
cept at lunar noon. This will reduce the power density of
the incoming sunlight, requiring the arrays to be over-
sized.(60 percent additional array area) to supply the re-
quired energy for both the daytime power needs and night
time energy storage. It is assumed that the observatory
will be located on the lunar equator. Other latitudes
would require even greater array area because of the
increased incident solar insolation angles.

‘The second type of array considered uses gallium ar-
sepide (GaAs) solar cells on a rigid array structure
(Fig. 2). This array would track the Sun as it traverses
the lunar sky. The GaAs PV Sun-tracking arrays were
considered because the efficiency of the GaAs solar cells
is more than double that of the a-Si cells {22.5 percent
efficiency for GaAs versus 9.2 percent efficiency for a-Si
cells) and because Sun-tracking arrays do not have the
inefficiencies of flat arrays caused by the decreased en-
ergy density of oblique insolation. However, the GaAs
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Fig. 1. a-Si PV power system schematic.
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Fig. 2. GaAs PV power system schematic.

arrays, which require a Sun-tracking support frame, piv-
ots, and tracking mount. have a higher specific mass and
would probably require a longer construction time than
for the a-Si system.

While assembling the power system that will supply
the observatory, it may be necessary to generate power
for the construction vehicles and equipment. For PV sys-
tems this is not a problem because PV array panels are
modular. As soon as one panel is installed it could gener-
ate power to support the erection of subsequent panels.
Because the a-Si PV arrays studied here are more easily
deployed than the GaAs PV arrays requiring the Sun-
tracking structure, the construction crew could roll out
an area of a-Si PV blanket sufficient to supply the con-
struction power requirements, whereas the GaAs PV
power system may require some initial auxiliary power
such as primary fuel cells to power the construction
equipment necessary for erecting the first GaAs PV array
panels.

To avoid the use of relatively heavy primary fuel
cells for the initial construction power for the GaAs PV
power system, a hybrid a-Si/GaAs PV system consisting
of the two types of arrays working simultaneously and
independently (Fig. 3) was considered. An a-Si planar
array is initially rolled out with sufficient area to provide
20 kW, for both the lunar day and night (via a gaseous
reactant RFC energy storage system). The a-Si arrays
could be rapidly assembled such that the GaAs arrays and
fuel cells may be setup before lunar nightfall; as well as a
portion of the observatory. Once the GaAs arrays have
been assembled, the a-Si arrays will be dedicated to re-
charging the RFC's. The rigid Sun-tracking GaAs arrays -
will provide the daytime power requirement for the ob-
servatory. A disadvantage of this strategy is that two
different cell technologies would have to be developed
simultaneously.

It is possible to reduce the total power system mass
(including the array and RFC masses) by using a-Si arrays
to supplement the GaAs arrays for daytime power re-
quirements. However, optimizing the ratio of a-Si cells
to GaAs cells to minimize the hybrid system mass makes
little difference in the overall system mass, especially
when compared with the systems considered below. The
value of 20 kW, day/night continuous power from the
a-Si arrays was selected based on the assumption that
20 kWe would be sufficient for construction power.

&-Si roll-out PV array
-\
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GaAs Sun-tracking
PV array

Fig. 3. Hybrid a-Si/GaAs PV power systern schematic.



Gallium Arsenide PV Power System with Cryogenic
Reactant RFC Energy Storage

A major disadvantage of the three solar power sys-
tems described above is the mass of the storage system
required to supply power through the 354-hr lunar mght.
The RFC energy storage for these systems accounted ‘for
92 to 95 percent of the total systemn mass. Cryogenic re-
actant storage, however, should result in much lower tank
weights compared with gaseous reactant storage. A

study was performed at NASA Lewis to determine the ef-~

fect of cryogenic reactant storage on the mass of an alka-
line RFC power system for a 'lunar application [5]. The
study showed that storing cryogenic reactants results in a
significantly lower overall system mass than conventional
pressurized gas storage, despite the additional mass of a
required refrigeration plant and the associated solar
array area necessary to provide power for cryogenic re-
actant refrigeration and storage.

A GaAs Sun-tracking PV system was selected for
this study because of its high efficiency and Sun-tracking
capabilities. The masses of the array, GaAs support
frame, pivots, tracking mount, wiring harness, power
management and distribution, and RFC's were included
in the system mass. The mass of the refrigeration plant
is also included. Figure 4 depicts a conceptual layout of
a lunar observatory powered by a GaAs PV/cryogenic
storage RFC energy system.

Nuclear Power System with Stirling Cycle
Energy Conversion :

The dynamic conversion nuclear reactor power sys-

tem considered was derived from a NASA Lewis study en-

titled, "SP-100 Power System Conceptual Design for
Lunar Base Applications” [6]. This design uses:the
SP-100 reactor thermal power source, located in a sur-
face excavation, thereby employing lunar soil for radia-
tion shielding (Fig. 5). Thermal energy is converted to
electricity via Stirling cycle energy conversion. In the
original study eight Stirling engines, each with a dedi-
cated heat pipe radiator assembly, are arranged radially
outward from the reactor to produce 825 kWg. In this
study the power system was scaled to the assumed 20 to
100 kWg operational power range. The power level can
be varied up or down by varying the engine size and/or
the number of operating engines and spares. System re-
liability is optimized by providing at least two spare Stir-
ling power conversion subsystems. In addition, the design
provides the capability to maintain the nonnuclear compo-
nents, including the Stirling engines and radiator panels,
A disadvantage of this system option is that the construc-
tion of the power system and the observatory would prob-
ably take more than the baselined 14-day stay time
unless sufficient workers and construction vehicles are
provided. :

Unlike the PV power systems, which can supply both
initial construction and operational power by erecting ad-
- ditional modules, the nuclear power system cannot pro-
vide any power toward its construction. A separate
power system must be assembled to provide the necessary
power to construct the nuclear power system, which will
eventually supply the observatory power requirements.
Because of the ease of deployment. an a-Si PV roll-out
array power system was assumed as the construction
power system, providing 20 kWg continuous day and night
power. Both gaseous RFC storage and primary fuel cell

Fig. 4. Lunar observatory with GaAs solar PV trackihg arrays and ciy-
ogenic regenerative fuel cell storage system.

Fig. 5. Lunar base power system with SP-100 reactor and stirling cycle
dynamic energy conversion.

(PFC) energy storage were considered. Although the a-Sij
PV power system with PFC energy storage is about 30
percent lighter, it can only provide power for one lunar
night, and the mass advantage was not deemed sufficient
to justify its selection. The a-Si PV power system with
RFC energy storage can provide multiple night power
should construction problems arise, and it can serve as a
backup power system for future activities.

Nuclear Power System with Thermoelectric
Energy Conversion

To ameliorate the possible problem of long construc-
tion times for the nuclear Stirling power system, an alter-
native nuclear power system was considered (Fig. 6). In
this congept a completely assembled SP-100 nuclear reac-
tor power system using thermoelectric energy conversion
is integrated with a dedicated lunar lander (i.e.. descent

- .capability only). Only a few hours are required to con-

nect power busses to the lander. An additional 24-hr

startup period would be needed to thaw out frozen cool-
ant lines before power would become available. A small
part of the construction time would be required for the
setup of the power system, enabling the crew to spend

most of its surface stay constructing the observatory.



