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This text treats the fundamentals of optical and infrared detection in terms
of the behavior of fhe radiation field, the physical propertles of the detector,
and the statistical behavior of the detector output. Both incoherent and
coherent detection are treated in a unified manner, after which selected
applications are analyzed, following an analysis of atmospheric effects and
signal statistics. The material was developed during a one-semester course
at M.LT. in 1975, revised and presented again in 1976 at Lincoln Laboratory,
and rewritten for publication in 1977.

Chapter 1 reviews the derivation of Planck’s thermal radiation law and
also presents several fundamental concepts used throughout the text. These
include the three thermal distribution laws (Boltzmann, Fermi-Dirac, Bose-
Einstein), spontaneous and stimulated emission, and the definition and counting
of electromagnetic modes of space. Chapter 2 defines and analyzes the perfect
photon detector and calculates the ultimate sensitivity in the presence of
thermal radiation. In Chapter 3, we turn from incoherent or power detection
to coherent or heterodyne detection and use the concept of orthogonal
spatial modes to explain the antenna theorem and the mixing theorem.
Chapters 4 through 6 then present a detailed analysis of the sensitivity of
vacuum and semiconductor detectors, including the effects of amplifier noise.
Thermal detectors are then treated in Chapter 7, thermal-radiation-field
fluctuations being derived using the mode concept and a semiclassical
approach originated by HANBURY BROWN and Twiss (1957a). Chapter 8
again uses the spatial-mode concept, as well as the stimulated- and spontane-
ous-emissionrelationships to determine the advantages of laser preamplification
prior to detection. Atmospheric limitations on detection efficiency are briefly
reviewed in Chapter 9 with special emphasis on the effects of turbulence.
Following a detailed discussion of the significance of signal-to-noise ratios in
terms of detection probabilities in Chapter 10, radar, radiometry, and inter-
l'eromctry are used as a framework to demonstrate the application of the
previous results. -

I have not tried to be encyclopedic in the treatment, either in terms of

‘c,omplete references or a discussion of every type of detector. References are

included for more detailed background or, in some cases, historical interest.
The most common photon and thermal detectors are analyzed; more
-specialized devices may be easily understood by extension of the treatments in
the text. As an example the charge-coupled photon detector (CCD) recently
-reviewed by MILTON (1977) is basically a semiconductor photodlode wnth
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integrated readout and amplification. A detailed breakdown of the whole family
of detectors may be found in KRUSE (1977). Another valuable reference is
the annotated collection of papers by HUDSON and HUDSON (1975). -

As basic sources for the fundamentals of incoherent detection and noise, |
found SMITH et al. (1968) and VAN DER ZIEL (1954) invaluable, the latter
especially helpful for an understanding of detector-noise mechanisms. The
final version of the work profited by suggestions and comments from my
colleagues and students and [ especially thank Robert J. Keyes, my co-worker
for many years, for his help and advice on detector behavior. I am indebted
. 10 Marguerite Ampolo for typing the original lecture notes. to Debra Brown
* for preparation of the final manuscript, and to Robert. Duggan for the illustra-

tions. ’

Lexington, Massachusetts,
January 1978 . e ~ R.H. KINGSTON

-
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1. Thermal Radiation and Electromagnetic Modes |

Before a discussion of the detection process, we first investigate the properties of
the optical and infrared radiation in equilibrium with a cavity at temperature T.
The results of this derivation are essential to an understanding of detection
processes limited by thermal radiation from the vicjnity of the detectors as well as
from the background or other extraneous radiators near the desired signal source.
The treatment also introduces the three forms of thermal statistics which will be
used later in discussions of laser preamplification and thermal detectors. A up
right final concept, introduced in this chapter and developed elsewhere in the text,
is that of the allowed spatial modes of the electromagnetic field. The properties
of these modes are key elements in the treatment of heterodyne detection and
radiation field fluctuations.

1.1 The Nature of the Thermal Radiation Field

To treat the thermal radiation field we start with the applicable distribution .
statistics for “‘photons™ and apply these statistics to the allowed modes of an
electromagnetic field. First we consider the appropriate statistics, which are one
of a class of three distin¢t types. These are Maxwell-Boltzmann, Fermi-Dirac,
and Bose-Einstein. They are each the probability of occupancy of an allowed
_state and apply to different types of particles, as follows:

Maxwell-Boltzmann: Distinguishable particles, no exclusion principle. Limiting
statistics for all particles for high energy or state occupancy much less than one,

A(E) = feonT (1)

where E is the energy of the state and k = Boltzmann’s constant = 1. 38 x 102
JK™.

Fermi-Dirac: Indistinguishable particles obeying the exclusion prmclple, ie.,
only one particle allowed per state (e.g., electrons),

1 |
PE) = cmmomr 1+ (1-2)‘

Bose-Einstein StatlSthS Indlstmgmshable pamcles and unhmlted state oc-
cupancy,



2 Thermal Radiation and Electromagnetic Modes

F(E) =;—.,)'7—_—, (1.3)

For the case of the modes of an electromagneiic field or “photons”, the
number of “‘particles™ is unlimited and the distribution becomes

P(E) = CT,,TI—_—] (1.4)

and is usually referred to as ‘‘photon statistics”. In both the Fermi-Dirac and
Bose-Einstein statistics, the fixed energy parameter E¢ or Ey is adjusted so that
the total distribution in the system adds up to the total number of available
particles. In the case of photons, the number is not limited and E; becomes
zero. The derivation of these statistics may be found in standard texts (see, for
example, Reif, 1965) and is a subject in itself. We therefore shall not justify them
- at this time but later shall derive some relationships based on radiation theory
which make them self-consistent and at least plausible.

1.2 Derivation of Planck’s Radiation Law

We start with the following theorem: _

In a large cavity (dimensions large compared to a wavelength), each allowed
electromagnetic mode of frequency v has energy E = hv, and the number of the
modes excited is determined by the Bose-Einstein statistics applicable for
photons. The temperature is determined by the temperature of the wall or of any
absorbing particle in the cavity, under equnllbnum conditions.

Consider a large cavity with slightly lossy walls, which for convenience in
counting modes will be a parallelopiped of dimensions L,, L,, and L,. To count
the modes as a function of frequency, we write the standing-wave solution to
Maxwell's equation as

E = E; sin k_x sin k;vy sin k,z sin 2nvt
subject to the boundary conditions that
k.L, = nm, etc.
We also note that Maxwell's equation,
'E = (/N Efar*
requires that

ki + k2 + k2 = d4m?/c?



Derivation of Planck’s Radiation Law 3

Using these relationships, we can construct the distribution of allowed modes in
k space as an array of points occurring at k, = nn/L,, k, = nnL, etc.. where n
is an integer | or greater. The density of points in k space, as seen from Fig. 1.1,
becomes

R O A B SEEE A S

Fig. 1.1. Mode distribution in k
space

where V is the volume of the cavity. To determine the density of modes versus
frequency, we note that

2ny
kI = =,
as shown in Fig. I.1. Therefore, a spherical shell in the first octant of & space

contains points that represent all modes at frequency v = |k|c/2n. We then
may solve directly for the number of modes dN in a frequency range dv

dN = % - p, Kk

T/ V\4n?  2ndy
- (?)(?) PR (1.5)
= 4:,V < vidy .

To calculate the energy per unit frequency interval, we must take into account
the allowed occupancy of the modes. This is given by (1.4) and also must include
the fact that two separate orthogonal polarizations are allowed for each mode.
Thus
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du = dE[V = 2 £ hvdNJV (1.6)
and the final result is the energy per unit volume per unit frequency range,

8nh vidy

b= =5 Gy .7

where # = Planck’s constant = 6.6 x 107 Js. .

We now ask what isthe power density that strikes the cavity wall or crosses
any small surface area within the cavity. We know that the energy density arises
from forward and backward travelling waves that produce standing wave modes,
and that the waves and the energy are moving at the velocity of light c. If the
surface has area 4, the power striking it at an angle & from the normal is given by

< du Acos0dQ

dP’ == 2 Y 21’[ , "(1.8)

where, as shown in Fig. 1.2, the power density that flows in a small solid angle
42 is one-half the energy density multiplied by the velocity of light, reduced by
the ratio of the solid angle to a full hemisphere. The power collected by the -
surface is proportional to A cos @ because of the angle of incidence of the fiux.

Fig. 1.2. Power flow in thermal-radiation
field

This argument assumes that the radiation flow is isotropic, which could be
proved by. use of the cavity treatment but which we shall show later in a more
general proof. Integrating over the hemisphere, with

dQ = 2rsin 8 d

yields
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c *AcosO2rsinfdf ¢ ' . ‘
P, =+ du, f o = = 4 duA (1.9)
and
3
dl = 2nh v’dy (lLlO)

”—_C—zm’

where I, is defined as the irradiance or the total power per unit surface area.
This last expression is the commonly used form of Planck’s radiation law. The
distribution for T =300 K is plotted in Fig. 1.3 with v*, the reciprocal
wavelength (wave numbers) as the variable. '

R . .
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Fig. 1.3. Planck distribution for T = 300 K. For any temperature T, multiply the abscissa,
v*, by T/300, and the ordinate d//dv* by (7/300)

1.3 General Properties of Blackbody Radiation

In our derivation, we assumed an ideal cavity with slightly lossy walls in order
to derive the radiation law. We now generalize and introduce the concepts of
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emissivity £ and absorptivity a. By use of a general principle known as detailed
balance we may show that

1) The emissivity of a body is equal to its absorptivity at all frequencies and
at all incidence angles.

2) The radiation is isotropic and independent of position in the cavity.

3) The radiation law is true for any enclosed region of arbitrary shape,
provided that the temperature of all walls and enclosed objects 1s the same.

We first jnsert in the cavity a small particle that absorbs completely at all
frequencies. If the particle is at the same temperature as the walls, then the
energy it absorbs should equal the energy it radiates, otherwise its temperature
would change. We imagine the particle to move throughout the cavity. Because
the energy it radiates is a function of temperature alone, the energy incident on
it must be independent of position, otherwise the temperature of the particle
would change, in violation of the equilibrium requirement. Therefore, the
radiation fieldis independent of position. We next assume that the particle has
emissivity less than unity. In this case, the particle radiates less energy than the
energy impinges on it. To maintain constant temperature, its reflectivity must
balance its decreased emission.-We therefore require that the emissivity be equal
to (1 < reflectivity)e which is equal to the absorptivity. In a similar manner, using
arpitrary shields or frequency filters about the particle, we can show that the
radiation in the cavity is isotropic and that the equality of emissivityto absorp-
tivity hold@s at all frequencies and angles of incidence upon a surface. Finally,
we imagine qur sample cavity to be coupled through a small hole to a second

cavity of arbitrary shape and with walls of any emissivity, all maintained at the
gquilibrium temperature T. By inserting frequency, angular, or polarization
Tilters between the two cavities, we may show that the radiation in both cavitics
must have the same frequency, angular, and polarization behavior; otherwise
the secaonii cavity would "absorb or lose energy, again violating the equal-
temperature requirement. For further details the reader is referred to Reif (1965).

We now deduce two important consequences of the foregoing arguments.
These are, first, that a surface with emissivity ¢ and temperature T emits energy,
even in the absence of incident radiation, at a rate that is equal to the rate at
which it absorbs energy from the radiation that is incident on it in a cavity that
is at the same temperature. if we define the radiance in Wm™? .steradian, H, o,
then the radiance from a surface of area 4 is

2h V¥dvcos 0

dH, g = &(v,0) + &2 ('el.y/kr 1 (1.11)
and the total emitted power for isotropic ¢ is
3
dp —g.2Th _Avdy | | (1.12)

v Cz (ehv/kT — l) ’



A Plausibility Test of the Planck Distribution 7

which, when integrated over frequency, yields the Stefan-Boltzmann equation.

An extension i this rule may be applied to a partially absorbing medium
distributed in a small volume of the cavity. In this case, we surround the absorb-
ing or partially transparent medium by an imaginary boundary and, considering
one direction of energy flow through the bounded region, require that the net
flow into one side equals the net flow out. If the medium is to maintain constant
temperature, then the radiation absorbed along the path must equal the radia-
. tion emitted. It then follows that the medium emits in the forward and backward
directions with an effective emissivity equal to the absorptivity or fractional
power loss along the path. If we remove this absorbing medium from its cavity
but maintain its temperature, it will appear against a radiationless background as
an emitter that radiates according to the same laws as an emissive surface at the
same temperature. :

1.4 A Plausibility Test of the Planck Distribution

Although we presented the three statistical distributions without proof, it is
instructive to show the interaction between two of them to indicate their physical
plausibility. We do this by calculating the interaction between a simple two-level
Maxwell-Boltzn.ann system and the radiation field inside a blackbody cavity.
This treatment was used in a reverse manner by Einstein to derive the Bose-
Einstein statistics. We start by defining the Einstein 4 and B coefficients for
atomic transitions, as follows. In a two-level system with low occupancy, the
probability of transition from a higher énergy state, level 2, is given by

P(emission) = (4 — Bu) /5, (1.13)
where A represents the spdntaneous-cmission term and Bu is the induced emis-
sion, which is proportional to the energy density in the radiation field. /3 is the
Maxwell-Boltzmann factor for the upper state, exp(— £,/kT). The absorption
rate is

P(absorption) = Bu /, ; (1.14)
1

if the atomic system is in equilibrium with the radiation field, the two rates
should be equal. Thus we have

AIB = u(/, — /DI = ule™ 1 E0AT — 1),
Substituting the Planck radiation density for u yiclds

AlB - 8rhni/c, ‘
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which we note is completely independent of temperature. This is satisfying
physically, because it indicates that the ratio of spontaneous emission power to
induced power is proportional to 1*, as would be expected from classical theory.

1.5 Numerical Constants and Typical Values

The physical constants used in typical calculations of the radiation field are

h=66x 107*]s

k = 1.38 x 1072 JK“!
¢=3 x 10* ms™!
e=16x10"C.

. During most calculations, it is more convenient to express photon energies and
thermal energy in eV, which are defined as the voltage difference through which
an electron would have to fall to gain the same energy. Thus, if the energy is 1
¢V, the energy in joules is 1 V times the ¢lectron charge, or 1.6 x 107" J. The

photon energy is
E=hv=he/[d
which, expressed in eV is
" () = heled = 1.24)2,
: w‘l,u;rc the wavelength 2 is expressed in pm. Similarly, the thermal energy in
eVis

(kT)py = =~ = 0.026 (T/300),

where T is expressed in K.

On the basis of these relationships, it is instructive to calculate the value of
the Bose-Einstein occupancy factor for typical temperatures and wavelengths.
The result for T == 300 K, and for a wavelength of 1 pm (just into the infrared
from the visible), is

1 1

K=W‘T—1=e‘.—l:lo-2’.

For 10 pm, about the longest mfrared wavelength propagated through the
atmosphere, the factor is ,
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1
f=av =10

Thus, in either of these cases, the state occupancy is much less than unity;
we shall use the following approximation in many of the treatments to follow:

e m e

f= T

Problems

1.1 Derive the Stefan-Boltzmann law by integrating over 'the Planck distribu-
tion. I = eoT*. Show that o = (2n°k*)/(15¢*A%) = 5.67 x 107 Wm™? deg*.
[The integral [ °(x’dx)/(e*—1) = n*/15].

1.2 A surface is in equilibrium with a blackbody field of temperature 300K.
a) What is the total irradiance on the surface?
b) At what wavelength 1 is the irradiance per unit frequency a maxxmum"
Check your answer with Fig. 1.3.

1.3 The sun’s diameter subtends an angle of 9.3 milliradians as seen from the
earth. If the sun is a perfect blackbody at temperature T = 5800 K, find the
solar constant, the irradiance at the top of the earth’s atmosphere.

1.4 An optical receiving element of aréa A has diffraction-limited beamwidth
given by Q = A%/ 4, where Q is the solid angle of the beam. Find the power per
unit frequency interval incident on the receiver within this solid angle 2. Find the
value for the limiting case where Av < kT.

1.5 In Section 1.3, we derived the ratio of the Einstein 4 and B coefficients by
placing a Maxwell-Boltzmann distribution in equilibrium with the radiation
field. Repeat the calculation using a Fermi-Dirac system, again in equilibrium
with the radiation. Note that the transition probability is now proportional to
the occupancy of the initial state times the “emptiness” of the final state. You
will thus have terms in (1 — /), etc.




2. The Ideal Photon Detector

We now treat the optical and infrared detection process by postulating the ideal
photon detector. This is a device that samples the incident radiation and produces
a current proportional to the total power incident upon the the detector sur-
face. We first consider the fundamental principles of detection, then the noise
associated with the detection process, and, finally, analyze two limiting forms of
detection, signal-noise limited and background-noise limited. In the latter case,
we shall use the results of Chapter I to find the limiting sensitivity in the pres-
ence of thermal radiation. The treatment in this section ignores noise from the
following amplifier stages as well as noise sources peculiar to real devices;
however, the results set the absolute limits of sensitivity for a device that exhibits
ideal behavior.

2.1 Event Probability and the Poisson Distribution

Here we start with a fundamental theorem of photodetection that is the basis of
the whole treatment of detection theory. The theorem is: If radiation of con-’
stant power P is incident upon an ideal photon detector, then electrons will be
produced at an average rate given by

F = nPlhv

where 7 is defined as the quantum efficiency, that is, the fraction of the incident

power effective in producing the emitted electrons. A second and mostimportant

part of the theorem is that the electron-emission events are randomly distributed

in time. Because of the quantum nature of radiation, each photoevent or electron
results from the extraction or loss of one “photon” or hv of energy from the

incident field. If the incident radiation is time varying, the average rate will vary

with time in the same manner. For constant 7, such a random process obeys

Poisson statistics, which state that the probablllty of the emnssnon of k electrons

in a measurement interval 7 is

k-n :
pik, )—(")(, : @1

A derivation of this distribution may be found in Davenport and Root (1958).
In the case of time-varying power and thus 7, the Poisson distribution is still
valid. provided that the sampling interval 7 is short compased to any charac-



