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PREFACE

During the last few years, a number of interesting results and promising ideas
have beén generated in the area of semantical aspects of programming languasges. We
felt that we would do a real service to this emerging field by calling a write-in
symposium and collecting a number of representative contributions covering the var-
ious aspects.

We are happy to present here the results of this endeavoxr in the form of Lecture
Notes. It is understood that many of the contributions represent work in progress
and that some may appear .elsewhere in final form. We take this opportunity to thank
the contributors and Springer Verlag for their exceptionally prompt collaboration.

Minneapolis, October 1970

Erwin Engeler

. P.S. The papers are arranged alphabetically according to authors, a joint biblio-

graphy is located at the end‘of the volume,
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AXIOM SYSTEMS FOR SIMPLE ASSIGNMENT STATEMENTS*

by
J. W. de Bakker

1. Introduetion

In this paper we present a number of axiom systems for simple assignment state~
ments and investigate some of their properties and mutual relations.

Simple assignment statements are statements of the form a:=b, x:=y , etc.
We give a formal definiiion (in section 2) of the effect of a sequence of simple
assignment statements upon a variable. Two such sequences are called equivalent
if they have the same effect upoh all variables. In section 3, we single out four
equivalences as axioms, and give a number of rules of inference which allow us to
derive other equivalences, We then show that the axiom system is complete in the
sense that if two sequences have fhe_§ame effect upon all variablgs, then their
equivalence is derivable in the system, and vice versa. Tﬁe axiéms are also shown
to be independent. In sectionZS, we lnvestigate the possibility of replacing the
four axioms by a_smaller number, First we .show that three axioms suffice, and
then we introduce an infinity of pairs of axioms, all equipollent with the original
four., Some variations of thege systems are discuééed in section 6., In section Ty
wergive a.one—axiom system, but with an extension of the main rule of inference,

Axiomatic characterizations of prégramming conéepts in terms of equivalences
have been given by McCarﬁhy (1962, 1963a) as extended by Kaplan (1968b) , and Igarashi
(1964, 1968). Our paper is closest to Igarashi's, where (general) assignment,

conditionals, and goto statements are treated. Igarashi also gives several

——

zThis paper is a somewhat modified, and slightly extended, version of de Bakker
1968). ’ : :
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completeness theorems, of which ours is a special case v(our proof is different, how-
ever)., An axiomat:ic aﬁproach to programming concepts, including assignment, is also
taken by Hoarei (1969 ), but he does not take equivalence of statements as his start-
ing point. References to various other approaches to,asvsigmnent, not directly of an
axiomatic nature, can be found in our survey paper (de Bakker, 1969 ) and in the

bibliography of London (1970b) which also contains more recent material.

2. Definitions

Let V be an infinite set, V2 the set of all ordered pairs of elements of V,
and 'Vz* the set of all finite non-empty sequences of elements of V:a . The elements
of lV are denoted by lower case letters, possibly with indices, e.g., a,b;...,sl,tz,
eee3Xy¥,2 3 the elements of V2 are denoted by pairs such as ab, Slt2 s Or Xy , and
the elements of VZ* are denoted by sequences such as ab cd, slt2 s O XY Y2 2X . ‘
S’Sl’SZ’”' stand for arbitrary elements of VZ* . '

Definition 2.1 1. The elements of V are called variables.

’

2. The elements of V2 are called assignment statements.
* T )
3. The elements of V2 are’ called sequences of assignment statements.

The elements of V correspond to the (simple) variables of, e.g., ALGOL 60; the

.

elementé of V2 to assignment statements such as a:=b, 8¢ =t2 ,0r x:=y ; and
the elements of Vz* to sequences of assignment statements such as' as=bjec:i=ad,
or sl:=t2 s OT XITY3¥y:1=23255X,

Definition 2,2 Let sev? . pi(S)', 1=1,2 , is the ith element of the or-
dered pair S . i

Definition 2,3 Let SE€VZ . The set of left parts, A(S) , and the set of
right parts p(S) , are defined by:
1. Ifr Sev? , then A(S) ={py(8)} and p(8)=(p,(8)} .

2

2, If $=5/5,, S;€V°, S5,€V" , then

A(S) =')\(Sl) ur(sy)

and

p(s) =p(Sl) up(s,) .
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’
<

Definition2,4 Let SGVZ* « The length £(S) of S is defined by:
1. If SeV%, then ¢(8)=1. - o |
2. Ir $=55,, S,€V°, S,V , then 4(5)=1+4(S,) .

For the gimple assignment statements we are concerned with in our paper, it is easy k
to give a formal description of their \;suai memﬂﬁg, by dafinihg the effect E of a
sequence S upon & variable a .

Definition 2,5 The function E: VXV =V 1is defined by:

1. let a€V and S€V® . Then

B(a,5) =p,(S) , 1f a=p,(8) ,

-a -, if a;‘pl(s) .
. 2% V2 ;
2. Let a€V and S=3132 s with Slev and 826 . Then

E(a,S) =E(E(a,82),Sl) .
Examples: E(a,ab)=b, E(a,bc)=a(b#c). , and E(c, ab bc ca) =E(E(c, ca), ab be) -
= E(a, ab be) =E(E(a, be) , ab) =E(a, ab) =b . ' '
Next, the notion of equivalence of two sequences of assign_me_ht statements is defined

'

in terms of the function E .

Definition 2,6 Let S,,5,€V% . S, and S, are called equivalent if for all
a€V, K(a,5)=K(g,5,) . '

Example 1: ab bc ca ab and &ac cb ba are equivalent, since

E(a, ab be ca ab) =¢=E(a, ac cb ba) ,
E(b, ab be ca ab) =c=E(b, ac cb ba) ,

E{c, ab bc ca ab) =b=E(c, ac cb ba) , .-
and for all d%a,b,c ,
E(d, ab bec c; ab) =d=E(d, ac cb ba) .
* Exemple 2: ab bc and 'bc ab are not equivalent, since

E(a,ab be)=b , and E(a, bc ab) =c .



3. An Axiomatic Theory for Eguivalence

We now introduce a formal axiomatic theory & for the equivalence of simple
assignment statements. Well-formed formulas of the théory are expressions of the

*
form Sl=S , with 81,82€V2 . The axioms of the system are:

2
Alz For a1l a,b€V , ab ba=sgb .

A, : For all a,b,c€V with a?fc , ab ac=ac .

5%
A3: For all a,b,c€V , abca=abecb.
AA: For all a,b,c€V , abcb=cbab.

The rules of inference are:

bd=82bd(a;4b) , then S. =5, .

Rlz If Slao=Szac , and Sl 1 =5,

R2: If Sl=82 s then '82=31 . If Sl=32 and S‘,2=S3 s then Sl=53 .
R.: = = ’ = ’

3 If Sl 82 s then SSl 882 and sls SZS .

Remarks:

1. The set of axioms {Al’AZ’AB’AA] is denoted by a'.

2, Rule R1 may be understood intuiti\}ely as follows: If Sl and 32 have the

. same effect upon all variables with the possible exception of a , if they have
the same effect upon all variables with the possible exception of b, and if

a'r‘b , then Sl and 82 have the same effsct upon all varisbles, i.e.,

Sl = 52 .
3. - We shall use formulas of the form Sl=52= SB= ... 8as an abbreviation for

Sl=82 and 82=83 and 33=... .

(1) ab ba=ab , Ay

(2) ab=abba, (1), R;;

(3) abzav, (2, (), Ry
(4) s=5, (3) Rys

From now on, the rules R, a.hd R3 will be used without explicit mentioning.

Lemma_3.,2. &b ab=ab .

Proof. ab ab=ab ba ab=g8b ba=ab , by Al, Al, Al °



-5

Lemmas 3.3. If a#c, a#d, and b#c , then ab cd=cd ab .

.Proof,

(1) ab cd cb=ab cb (bFe) » Ay

(2) cd ab cb=cd cb ab=cb ab (bFc) , Bys Bos

(3) @ab cd ecb=cd ab cb (b#c) » (1), (2), A
(4) abcd ad='cd ab ad (afd) , similar to (3);

(5) ab cd=cd ab (a#c,afd, btc) , (3), (4), R,
Lemma 3.4. If A(S))NA(S,) =A(s))np(s,)=A(s,) Np(s,)) =4 , then 5,5,=5,5, .

Proof. By repeated application of lemma 3.3.
(Using the completeness theorem of section 4, it can be proved that the asser-

tion of the lemma also holds with "if" replaced by "only if".)
Lemma . @aa bc=bc aa=bec .

Proof., 1. First we show that aa bc=bc .

(1) =aa ba=ba aa=ba ab=ba s AA, AB, Ajs
(2) aa ac=ac sy Ay Ags

(3) aa bc ac=aa ac bc=ac be=bc ac , A4, (2), AI,;
(4) éabc ba=aa ba=ba=bec ba (a#b), Ay (1), Ay
(5) aa bc=be (a#b) » (35 (&), Rys
(6) aa be=te , (2), (5).

2. Now we prove that bc aa=bc .
(7) bc aa=aa be=bc (aFb,a#c) , lemma 3.3 and part 1;
(8) ac aa =ac gc='ac } , A3 and lemma 3.2;
(9) ba sa=ba ab=ba , AB' Al;

(10) be aa=be 7, (8), (9).

-

lemma 3,6. aa S=S58a=5 ,
Proof., Follows by lemma 3,5.

The next lemma is included because its proof illustrates the method v\.J.SGd in the
proof of the completeneés theorem in the next section., The lemma shows the effect

of two succeésive interchanges of the two variables b and ¢ .
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Lemma 3,7. &b be ca ab be ca=ac (afc) .

Proof. 'It is easy to verify, using the previous lemmas, that the assertion holds if
a=b or b=c . Now suppose that a, b, c differ from each other. ILet x,y, 2

be three variables, different from a,b,c . Then

ab bc ca ab bc ca ax by=ab bc ca ab bt by ca ax=

ab bc ca ab by ca ax =abbccaabcabya.x‘=

ab bc ca ab cb by ax '=abbccacbabbyax

ab bc cb ab by ax - =ab bc ab by ax .=
ab bec ac by ax =ab ac be by ax =
ac by ax =ac ax by ‘

by the axioms and lemma 3.3. Hence,
(1) ab be ca ab be ca ax by=ac ax by .
Similarly, it is proved that
(2) &b be ca ab be ca by cz=ac by cz ,
and
(3) ab bc ca ab be ca ax cz=ac ax cz .
By (1), (2), and Ry,
(4) ab bc ca ab bc ca by=ac by .
By (1), (3), and R,
-(5) ab bc ca ab bc ca ax=ac ax .
By (4), (5), and Rl’ ab bec ca ab bec ca=ac ,
Remark. Lemms 3.7 is a fundamental property of assignment. Iﬁ fact, it may
replace axiom A2: ‘
{1) ab ab=ab , lemma 3.2;
(2) ab ac=ab ab bc ca ab be ca=ab bc ca ab be ca=ac (afec) , lemma 3.7, (1), and

lemma 3.7.
Hence, A2 can be praved from Al and lemma 3.7.

4e Completeness and Independence of the Axiom System

Theorem 4.1. (Coinpleteness theorem) Two sequences of assignment statements Sl and

82 are equivalent (in the sense of definition 2.6) if and only if Sl=82 is a

theorem of J .
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m
For the proof, we need an auxiliary theorem., We use the notation I S. as an
=

abbreviation for S:S.¢+s5_ &
172 m

3*
Theorem 4,2. Let sev? s A(S) ={al,a2,...,am} , m>1 . Let X be a subset of
V such that XNA(S)=¢ . Then for each i, 1<i<m , and each X 3Ky eeer X €X,

m

—aiE(ai,S) I oax, .

s
na 3%

3 3=
3%1 #
Proof, We use induction on the length of S
1. t(s)=1, i.e., S=ab, for some a,beV . Then, clearly ab=aE(a, ab) .
2 Let f.he assertion be proved for all S!' €V2* with ¢(s')=n. let S be an
element of V< , with £(S)=n+1, Then S=8S' ab, for some &ab€ v? aud
st eV with 4(s')=n . Let A(S‘)={al,32,...,’am} , for some m<n . We
distinguish two cases, a€A(S') and agr(st) .
2.1,  aex(st) , lees, a.=a.k for some k , 1<k<m . We have to prove that for
each i, 1<i<m, '
m
S' &b nl jx;]_ai E(ai,S akb) RN By%g .
Ji‘i A
We distinguish the cases 1=k and 1#k .
2.1.1. 1=k \
Case (a). b¢)\§S') . Then
st akb ke ajx‘1 =gt e 8‘;]

a,b gk ajxj—akE(b,S‘) gk ajxj—a.kE(a.k,S a.kb) ;I‘ ag%; »

xj a.kb=akE(ak‘, st) g axj a.kb—

by repeated use of 1em 3.3,x by the induction hypothesis, and since

bgAr(S') implies E(b,S')=b .

Case (). b=a . ‘This case follows directly from the induction hypothesis
and lemma 3.6,

Case (Y). b=a, ', for some h#k . Let x, be an arbitrary element of X,

Then



2.1,

2.2,

2.2,

2.2,

-8

5! “x%n j%k & x =5 "k akah j}-‘(k ajxj—
o T o e o B S D ey ey, o=

o o TS ey ety ey S aBlay, Sae B egx =

U Moo 81 B ey T Bla, St am) 0 e

by A2, A, lemma 3.3, and the induction hypothesis.

3
2. i#k . Follows easily from the induction hypothesis.
agr(s') , i.e., )\(S)={al,a2,...,am, am+l} » with a=a .. . Here we have

to prove that for each: i , 1<i<m+1l,

mtl mtl
St a b jn 8% =8y E(ai, st am+lb) JII 8%,
A A

1. i=m+1 . Again the cases bgA(S) , b=a .., and b=a , 1<h<m, must
be distinguished. The proofs are then similar to cases (a), (B), and (Y)

above,

2. i;f m+l , Follows easily from the induction hypothesis. This completes the

prbof of theorem 4.2.

We can now give the proof of theorem 4.1.

Proof of theorem 4,1.

1.

First we prove: If 5,=S, 1is a theorem of J , then for all a€V , E(a, Sl) =
E(a, 52) « Let ALi(Ar'i) s 1=1,2,3,4 , denote the left-hand side {right-hand
side) of the axiom 4, , It is easy to verify that for all aGV s, Ea, Al.i) =
E(a, Ari) .
same effect upon all variables is preserved by application of the rules of in-

Moreover, it is easily established that the property of having the

ference,

Let E(a,S5;)=E(a,S,) for all a€V . We prove that then §,=85, 1is a theo-
rem of J , We may assume that )\(Sl) =}.‘(Sz) , say A(Sl) =>‘(S2)=I51’~a2""’am}'
(1f, e.g.,. aiex(sl)> A(Sz) » then replace S, by S, a.a; , etc.) Let XgV
be such that xnx(si) =¢ , 1i=1,2 , Then, by theorem 4.1, for each i,

1{igm,



E(a S)nax,

1, H L T P
and Ji‘i J#
m
s, 321 a.‘],j iE(a’i’S)jn 8% .
# ' J#
Since E(ai , Sl) =E(ai , 82) , we have
m m
S, =8 ’ i=1,2 esey .
L oS T oo
# i

Suitable repeated application of R1 now gives Sl=S2 . This completes the proof

of theorem 4.l.

For the proof of the independence of our axiom system, we need a new éoncept
and some notations., We introduce an auxiliary function F . Let N be the set of
non-negative integers.

Definition 4.1, The function F: VXV° =N is defined by
l, Let &€V and SEV Then

F(a,S) =1 , if .a=pl(s’) and & #p,(8) ;
=0 , otherwise. .

.’ * . N
2. Let a€V and S=55, , with slev2 and szev2 . Then
Fla, s),=F(a,'sz) +F(E(a, 32) s 51) .

Fla,S) msy be described as the number of non-trivial steps which are made in
calculating the effec:t of S wupon a . ’
Exampl'e:-w Let ‘a,b,c be three different variables.

F(b, ab ca be bb) =F(b, bb) +F(E(b, bb) , ab ca be) =
0+F(b, ab ca be) =F(b, be) +F(E(b, be) , ab ca) =
1+F(c, ab ca) =1+F(c, ca) +F(E(c, ca) , ab) =

1+1+F(a,ab) =3 . ~

Definition 4.2. The sets of axioms a\{Ai} , 1=1,2,3,, , are denoted by
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In the remainder of this section and in the following sections, we shall con-
sider sets of axioms which differ from ay +« Therefore, the following notation is
introduced:

Definition 4,3. Let % be a set of axioms, and let sl,’szevz* . TS =5,
means that S, =5, can be derived from the set of axioms & by application of Rl ,

1 72

R

Z’R

3
Usually, it is clear from the context which set of axioms is meant. Explicit
mentioning of it is then omitted. E.g., up to now, Sl=82 always meant a}- Sl=52 .

We now prove the independence theorem,

. . 3
Theorem 4.3. The set of axioms @ is independent,

Proof. We exhibit four properties Pi=Pi(Sl,Sz) , 1=1,2,3,4 , such that if
a; F 8, =8, , then Pi(Sl,Sz) holds, but Pi(ALi,Ari) does-not hold. (ALi and
A are the left- and right-hand sides of Ai .) These properties are:
Pi: A(8)) =x(8y) . v
¥* . .
P.: s(Sl) =s(82) , where, for SEV2 , s(8) is the second variable of thé first
assignment statement in.the sequence S .
P,: For all a€V, F(a, Sl) +%a, 82) is an even number.
¥*
P f(Sl) =f(82) , where, for SGV2 , f(8) 4is the first variable of the first

assignment statement in the sequence S .

5. Equipollent Axiom Systems

In this section, we introduce several (in fact, an infinity of) smaller sets of
axioms for assigxﬁnent statements, and we prove that from these systems the same equi-
valences can be derived as from @ . (We do not change the rules of inference, El ,

Rz,and RB')‘

Definition 5,1. Let ?1 , 32 be two. sets of axioms for assignment statements.
. . . #* -
¥, > %, 1is used as an abbreviation for: For all Sl,Szgvz ¥ if % - 818, ,

then %, | 5, =5 F

2° 1
?32 and 329 ".r'l .

and %, are called equipollent, denoted by 51¢> Fy s if
#
Tn order to reduce the number. of exioms, one looks for equivalences which, in

some sense, combine the properties of some of the axioms A1 , A2 , A3 , anc A4 « Two
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equivalences which combine A, and A, are

3 4
B: ab ca = cb ab and Bt: ab ca=cbac .
Combinations of Al_’ A3 ,and A 4 are given by
Clz ab ca bc=cb ab and Ci: ab ca be=cb ac .,
The structure of Cl and C]'_ suggests that one also considers

D.: abca bc ab=cbab and D!: ab ca be ab=cb ac ,

1 1°
El: ab ca bc ab ca=cb ab and E:‘L: ab ca be ab ca=cb ac 5
C,e (ab ca bc)2=cb ab and C): (ab ca bc)2=cb ac ,

ete. ((8)" 1is e sequence of n times S .) The general form of these equivalences
is: .
C ¢ (ab ca bc)?= cb ab and C!: (ab ca be)?=cb ac ,
D : (ab ca be)ab=tcb ab and D!: (ab ca be)”ab=cb ac ,
E: (ab ca be)”ab ca=cb ab and E!: (ab ca be)Pab ca=cb ac .
It is easily verified that all these equivalences are indeed provable from (@ .
Let 8={A},A,,B} and @'={A),4,,B'},
C,={A,C ) and € =[,,0!],
8 ={a,,D} and 8! ={a,D!},
6,={A,,E } and & ={A,,E!} .
We shall prove that g, @' , and, for each n>1 , C,» s;l, dn’ dt‘l are all
equipollent with @ . As we shall see in section 6, this does not hold, in general,

1
for Cr1 and ‘0n .

Theorem 5,1. Q@< R »

Proof, 8> @ is clear. In order to prove (O>g, it is sufficient to show that

A d A

Bl A, end 8|4

(1) ab ca=ab ca ac=cb ab ac=cb ac=ab ¢cb (afec) , A, B, A, B
(2) ab aa=ab ab s B3

(3) ab ca=ab cb , (1), (2).

Hence, B | A3 . From AB ‘and B, AA follows directly.

Theorem 5,2. A< @' .

Proof. 8'=> @ is clear, Proof of Q> |':



