

Using C++
v e Bruce Eckel
SN

Osbome McGraw-Hill

Berkeley New York St.Louis San Prancisco
Auckland Bogotd Hamburg London Madrid
Mexico City Milan Montreal New Dethi Panama City

Paris' Sio Paulo Sing, 3
FEve Toney

¢

9450014

Osborne McGraw-Hill

N

2600 Tenth Street)

Berkeley, California 94710

U.S.A. 7
:2 ch

For information on translations and Book distributors outside of the
U.S.A, please write to Osborne McGraw-Hill at the above address.

A complete list of trademarks appears on page 607.
Reprinted with coreections, April, 1990.

Using C++

Copyright © 1989 by McGraw-Hill, Inc. All rights reserved. Printed in the

United States of America. Except as permitted under the Copyright Act-

of 1976, no part of this publication may be reproduced or distributed in
any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher, with the exception
that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

34567890 DOC/DOC 99876543210

ISBN 0.07-881522-3

Acquisitions Editor: Jeff Pepper

Technical Reviewer: Ron Burk

Copy Editor: Leslie Tilley

Proofreaders: Barbara Conway, Julie Anjos
Word Processor: Judy Koplan

Composition: Bonnie Bozorg

Production Supervisor: Kevin Shafer

This book was produced using Ventura Publisher Version 2.

Information has been obtained By Osborne McGraw-Hill from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our lourceu Osborne McGraw-Hill, or others
Osborne McGraw-Hill dees not guarantee the accuracy, ad ompl of any information and
is not responsible for any errors or omissions or the results oblamed from the use of such information.

Acknowledgments

There were several technical readers for this book. Foremost was Ron Burk
of Burk Labs in Seattle. Ron’s thorough knowledge and acid pen (ouch!)
are greatly responsible for making this book accurate. John Carolan of
Glockenspiel in Dublin also read many of the chapters and contributed
comments. Bjarne Stroustrup read Chapter 11 and answered many ques-
tions about the language by electronic mail—questions I don’t think I could
have answered any other way. Other technical readers were Walter Bright
(Zortech) and Brian McElhinney.

I received help with the style from my friend and editor at Micro
Cornucopia Magazine, Gary Entsminger, and the staff at Osborne/Mec-
Graw-Hill, including acquisitions editor Jeff Pepper and associate editor
Judith Brown.

Emotional support came primarily from Melinda. Comraderie was pro-
vided by Carl Haflinger, Mary Nerini, Marilyn Cvitanic, Tim Hohn, Cheri
Singer and Sam, Mark Bennett Western, the Moelter Family, the Robbins -
Family, Allison Brody, Michael Wilk, Dave and Sue Renschler, Dave
Mayer, Patrick Conley, Joseph Mclssac, Brad Jerbic, Todd, Lynn, Jim and
Brice. Larry Fogg contributed the occasional Fractal Thought Pattern.

Alot of the incentive for this book came from my friend Daniel Will-Har-
ris, with whom I seem to have been competing in everything since the first
day in junior high school, when we met. We now both have two computer
books to our names. If he (and Toni, of course) get a screenplay produced,
1 could be in trouble. However, that bet about who would be tallest will
always be my ace (you still owe me thousands of dollars for that one,
DWHY).

9450014

- s

Pre face

It seems that the most creative and innovative software is developed by
small teams of one or two people. As software projects have become larger
and more sophisticated, development teams have grown larger in an
attempt to cope with the complexity and deadlines. We have seen these
teams, and the companies that manage them, lose the clarity of their vision
about a proiect, or simply lose the ability to implement it in a timely
manner. The project either fails to materialize, or the delivery date slips,
and slips, and slips... ’

C++ is an object-oriented extension to the C programming language. An
object-oriented language allows, among other things, the complexity of a
program to be hidden. Most languages come with built-in data types and
ways for you to use those data types (add them, pass them around, print
them, and so on). C++ and other object-oriented languages allow you to
define your own data types and the ways to use those types. This is a

“powerful ability, but it also opens up many new questions (How will you

pass objects around? Will you add them? If so, how? How will an object
handle errors?). Most users of a language don’t need to think about these
details (and users of predefined data types in C++ don’t need to, either) but
when you begin defining your own types each of these questions must be
answered. This book serves as a guide to answering those questions.

C++ improves productivity. It does this not by imposing a structure that
you must follow if you want the program to come out "right," but by creating
a framework in which building an easy-to-read, robust, maintainable,
extensible program is the most natural path. This is true whether one is
experimentingor creating production code—in fact, you will find that much
of the code you create while experimenting survives into production.

The size of the problem a team can manage is based on their abilities
and the sophistication of their tools. One of the great benefits I see in C++
is that it puts the power needed to bui’ 1 large, complex projects back in
the hands of the one- or two-person team This means we may start seeing
the kind of wild innovation that was so retreshing in the early days of the

Xv

xvi

Using C++

computer revolution (which I start counting from the time when computers
got cheap enough that you weren’t forced to do “serious” work on them all
the time—people aren’t creative when they have to be serious). C++
certainly isn’t limited to small projects, however. The language provides a
way to communicate interface specifications between members of a large
programming team and to enforce the correctness of those interfaces at
compile-time. In addition, the ability to easily create and maintain large
libraries of useful tools will be a benefit to one-person projects as well as
very large teams.

There are numerous advantages to using C++. Some of the reasons the
language was designed are

n To simplify the building and use of libraries.

| To allow code re-use. If a library function doesn’t suit your needs,
you can easily modify a portion of it without understanding the
whole thing—whether or not you have access to the source code.

a To improve “maintainability” of code. Since the language supports
object-oriented design, code is generally much easier to understand,
fix, and modify (someone with a strong bent can still write bad code,
however.) C++fosters systems that can be designed for extensibility.

Many people who learn the language discover a more mysterious benefit.
Once a program compiles, it often seems to “just work right the first time.”
Although there is no way to measure or verify this benefit, it is probably
due to the stronger type checking C++ has over C, and the structure even
the most avid hackers are seduced into using when creating new data
types.

C++ is the first object-oriented language with efficiency as one of its
primary goals. Inefficiency and lack of compile-time error checking has
held object-oriented languages back from being practical in many produc-
tion programming situations.

I see the language from an individual viewpoint. One of my favorite
things about C++ is that it makes me think about programming in ways
Pve never considered before. Most commonly used procedural languages
make you think about programming; C++ helps you think about problem-
solving.

Pve had the same experience with C++ as I had when I learned calculus.
Before I learned calculus, algebra and trigonometry were interesting, but
only marginally useful. I didn’t remember them very well. When I learned

Preface xvii

calculus, a lot of things about algebra and trigonometry became very clear
and I quickly learned their intricacies because I had to use them, without
thinking about it, on a daily basis. The same thing happened with C++.
C++, like calculus, added a new dimension to my thinking. From this new
perspective, I could easily see the reasoning behind most of the featuresin
my previous framework of thinking (which was C and Pascal). My
knowledge of C has improved greatly since I started programming in C++
in 1987. Except for operator precedence—I’'ve never found a way to make
that stick.

If you can shake yourself free from the mindset of “fitting the problem
to the computer,” I think that you'll find the naturalness of “sending
messages to objects” to be a very comfortable and powerful way of thinking
about problems.

The Organization of this Book

This book assumes you already know another programming language. It
would be easiest, of course, to assume that language is C. However, many
people haven’t had any incentive to learn C—their own programming
language (probably BASIC or Pascal) has been satisfactory—until now.
C++ offers enough real benefits over traditional languages that large
numbers of programmers will want to learn it.

The book is divided into two parts. After introducing object-oriented
languages, Part One (including Chapters 1-4) presents the syntax of ANSI
C and C++, covering the features that are common between the two
languages, describing the extensions that C++ adds to ANSI C, and
especially flagging the places where they are different. This section focuses
on more than just the syntax of the languages, however. When you begin
writing larger programs in C++, you inevitably create many files that must
be managed and compiled properly to build the project. Part One covers
the proper constructior of multifile projects, emphasizing header files and
the make utility. All the programs in each chapter, in fact, are created
with the makefile, which is placed at the end of each chapter.

Part Two covers object-oriented and advanced programming in C++.
While Part One shows you what the language features are, Part Two shows
you how to use them. Chapter 5 shows you how to “overload” operators and
functions. Operator overloading means you can give an operator like + or
— a special meaning when used with a new data type you create. Function
overloading means you can create several meanings for the same function
identifier, depending on the argument list.

xviii Using C++

Chapter 6 shows you how-to create objects at run time, for situations
when you don’t know at compile-time how many objects you will need or

what their lifetimes will be. Creating objects at run time is an extremely .

powerful feature of C++.

Chapter 7 demonstrates how code can be re-used in C++, both by using

objects inside of other objects, and through the mechanism of inkeritance.
Chapter 8 shows you how to use inheritance to build extensible programs.
Once you've built an extensible program, you or someone else can easily
add features without ripping the existing code apart. The ability to build
extensible programs will save programmers a lot of time (and software
companies a lot of money).

Chapters 9-11 cover advanced topics. Chapter 9 considers the somewhat
thorny problems of passing object arguments and returning object values.
Much emphasis is placed on the copy-constructor X(X&), which often
causes new C++ programmers a lot of grief. Chapter 10 has several
complete examples, which provide you with some projects to sink your
teeth into. Finally, Chapter 11 covers the latest release of the C++ language
from Bell Labs, AT&T release 2.0.

The book has three appendices, each of which is a programming project.
Appendix A is a small graphics application that suggests a framework for
building a CAD system in C++. Appendix B is a mathematical matrix
manipulation package. Appendix C is a text windowing class. Appendices
A and C use library functions specific to a certain compiler (Zortech C++),
but these functions are hidden in the class methods and may easily be
changed. All the rest of the examples in the book should compile under any
C++ implementation.

Throughout the book, I've tried to use interesting examples.] have tried
to avoid repeating the typical textbook examples in favor of programs that
have either been useful or fascinating. One of the more difficult problems
in teaching this language seems to be the order in which concepts are
introduced. Great efforts have been made to ensure a concept is introduced
before it is used in an example, or at least to tell you where a concept is
explained, in the few cases where they are used prematurely.

A Note About Compilers

While I was writing this book, I used two different implementations of C++
on the PC: Glockenspiel C++ and Zortech C++ (I have also used AT&T
cfront, Gnu C++, and Oregon Software C++ on the Sun 3, but not for this
book). At the time, both products contained discrepancies with the C++

Preface xix

language. Between the two, however, I could find a way to compile all the
examples of correct C++. By the time you read this, many or all of the
discrepancies should be fixed. If you are doing serious development work,
especially if you want to port it to other platforms, I highly recommend
that you acquire more than one implementation of C++. Just because the
compiler complains about something doesn’t mean it’s a bug; and just
because code compiles on one implementation doesn’t mean it is legal C++
or will work with other compilers. Someday problems like this may be fixed.
Until then, you will get surprises unless you constantly test your code for
portability.

Source Code Disk

For your convenience, you can get all the sources listed in this book on a
5-1/4” DS/DD IBM PC-formatted diskette. Each chapter has its own
subdirectory and the makefile, which is at the end of every chapter, so all
you need to do to compile the code is move into the subdirectory and type
make. There are some further examples; tools I used in the preparation
of this book, programs I used to investigate compiler features, and (space
allowing) anything else I could add that didn’t make it into the book.

The listings in the book have all been compiled. After testing, the source
code was automatically put into book format, so human hands didn’t have
a chance to introduce errors. Sometimes, however, logic errors are discov-
ered, or a compiler bug that allows incorrect syntax to pass through
unflagged is fixed. If you discover errors like this, please mail them to the
publisher (the address is shown on the copyright page). They will be fixed
in the book at the earliest possibility, and the source-code disk will be
updated immediately. If you have trouble with a listing, chances are it w "l
be fixed on the source-code disk.

The disk is available postpaid for $25 from

Revolution2

501 N. 36th Street, Suite 1€3

Seattle, WA 98103

Checks only, please. Foreign orders please »1d $7, and use a check in

- U.S. funds drawn on a U.S. bank or an international postal money order.
See the form at the end of thispreface for details.

XX

Using C++

My firm, Revolution2, offers C++ consulting and on-site training. For
more information, write to the address given for source code disk orders.
You can get the company’s phone number from the C Gazette, where I am
the C++ editor and columnist, by calling (213) 473-7414. This is also the
number to call if you want a subscription to the magazine. I can be reached
electronically on BIX as Beckel, on Compuserve as 72070,3256 or on the
internet as 72070.3256@compuserve.com.

Preface xxi

Source-Code Disk Order Form

Please send me copies of Using C++ Source Code Disk (plus
additional projects). I have enclosed a check for $25 for each disk.
(Foreign orders please add $7 for shipping and handling, and use a check
in US funds drawn on a US bank).

Name

Company

Address

City State Zip

Telephone

IBM PC Diskette size (check one) 5u" 3"

Send to:
Revolution2
501 N. 36th Street, Suite 163
Seattle, WA 98103

Please send me information on Revolution2 consulting & training

Please include any comments you wish the author to read.

Osborne/McGraw-Hill assumes NO responsibility for this offer. This is
solely an offer of the author, Bruce Eckel, and not of Osborne/McGraw-
Hill.

e

Contents

Preface

Part One
Introduction to Object-Oriented
"~ Languages

1 Introduction to Object-Oriented Languziges

Basics and Conventions

Why Use an Object-Oriented Language"

The Evolution of Object-Oriented Languages
Support for Experiments and Structure -

The Process of Language Translation

Why You Need Objects A

The Advantages of Inheritance

The Definition of An Object-Oriented Language
C++ Versus Smalltalk

Summary

2 Using Predefined Classes

Tools for Separate Compilation

Your First C++ Program

make—an Essential Tool for
Separate Compilation

00«3 Ot W

11

18

19
20

22
29

35

21

More About Streams
Controlling Execution in C and C++
Introduction to C and C++ Operators

Using Standard /O for Easy File Handling

Utility Programs Using Streams
and Standard I/0

Makefile for Chapter Examples

Summary

Creating Classes with C++

Introduction to C++ Data

Scoping

Specifying Storage Allocation

C and C++ Operators and Their Use
Creating Functions in C and C++
Unique Features of C++ Functions
C++ Function Overloading

The class: Defining Boundaries

The Header File

Defining class Member Functions
Other class-like Items '

. Debugging Hints

Makeﬁ]e for Chapter Examp}e

‘ Ponnters and References '

f Addresses Are Just Like Mailhoxes

Pointers

Using Pointers and Addrem £
Variable Pointers

Array Pointers

The Size of a Pointer (Me: v “lgdels)

Function Addresses

Examples of Pointer Use

The Reference Feature

When to Use References
Makefile for Chapter Examples

37
41
43
51

55
58
60

61
64
67
75
86
90
92
95

104

111
118

- 124

130

133

61

133

Part Two
Object-Or rcnted Proci:..nming with £

Overloading Functions and Operators

The Syntax of Operator Overloading

Examples of Operator Overloading

Creating Your Own Type
Conversion Operators

Example: Creating Your Own
Stream Functions

. Selecting Friend or Member Functions

for Operator Overloading
Function Overloading
Makefile for Chapter Examples

Creating Objects at Run Time '
The Bias of Some Popular Langua, 3

Dynamic Object Creation . .
Arbitrarily Sized Objects

" The Mechanics of Dynamic Object Creation.

Changing the Behavior of new and delete
Pitfalls in Dynamic Memory Allocation. -
Using References with Dynamic .

Memory Allocation e s
Assigning to thisin a Constructor
Makefile for Chapter Examples

Reusing Code in C++

Reusing (ode with Member Objects
Reusing Coge: with Inheritance

Storing Oti-rts on Disk

A List T:ai Can Save and Retrieve Itself
Accessiiig Licviuents of the Dase Class
Makefile for Chapter Examples

201
201

217
228
231

235
238

-23%
245,

254

274

S 28‘(3. -

282 ¢
20

290
304
326
338
34,
351

197

199

239

293

8 Vriting Extensible Programs in C++

Coding the transportation Hierarchy in C++
¢n Virtual Functions

An Extensible Menu System

Abstract Classes '

Simulation Using Abstract Classes

Makefile for Chapter Examples

9 Arguments and Return Values

Passing by Name, Value, or Reference

Hidden Activities '

The Copy-Constructor X(X&)

Object Assignment

An Example of Deep Copy: class matrix
_ Tracing the Creation and Destruction

of Objects
Returning Objects with snew
Makefile for Chapter Examples

10 Complete Examples

Command-Line Arguments, Flags, and Files
A Program to List Files

TAWK: A Simple Database Interpreter

A Clock-Based Control System

11 C++Release 2.0

Continuing Incompatibilities with ANSI C
Multiple Inheritance ,
Type-Safe Linkage

The Copy-Constructor and operator=()

Can Be Created by the Compiler
Operator new and delete Can Be Overloaded
Global new and delete
New Operators Can Be Overloaded
Pointers to Members
New Qualifiers for Member Functions
New Forms of Initialization

357
363
371
389
396

1404

410
412
415

419
422

429
436
442

443
453
458
482

510
517
522

526
528
531
533
536
538
541

355

409

443

509

Parameterized Types
Exception Handling
Miscellaneous Changes

The Order of Initialization of Static Objects

MicroCAD

The MicroCAD Code
Features to Add as an Exercise
Makefile for MicroCAD

The Matrix Class

Standard Matrix Files
Speed Improvements
Code for the matrix class
Makefile for matrix class

Windows

Code for Close Window
Improvements You Could Add
Makefile for Appendix C

Index

547
549
551
556

557
575
576

580
581
581
595

598
605
605

557

579

597

Introduction to
Object-Oriented
Languages

Part One

