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1. Introduction

In a gas laser the optically active medium consists of atoms or
molecules enclosed in an optical cavity resonator. The electronic
excited states of the atoms or molecules form a set of discrete, unequally
spaced quantum levels. The radiation in the cavity causes transitions
between any two levels when the frequency of the radiation is close to
their energy difference divided by 4. The unequal spacing of the levels
makes it possible to maintain resonance between the radiation in the
cavity and a few energy levels only. The majority of the energy levels may
then be neglected or described in some average way.

The carliest gas lasers contained neon (Ne) atoms with helium (He)
added to obtain more efficient excitation of the atoms. This laser type
provided a large amount of insight into the experimental and theoretical
problems to be encountered in laser physics. The He-Ne laser is still
very important, but it is capable of only limited output power, usually
less than one watt in continuous operation. Other laser types, like the
argon ion laser (Ar~) or the carbon dioxide molecular laser (CO,),
give much higher output powers; the latter has been reported to give
up to 8000 watts in continuous operation. In addition to these, many
other gases have been used in lasers, and the number is rapidly in-
creasing. In many gases it is possible to use several different transitions
for laser operation. Over 1000 electronic transitions in gases have now
been reported to sustain laser oscillations. Most of these are, however,
rather difficult to maintain and the future development is likely to
centre ona few types. Fora review of thesituation see Bennett’sarticle. (!

Considering the importance of the gas laser we find it of interest to
summarize our theoretical understanding of its operation. It is the
purpose of the present paper to give such a summary and present the
main results in sufficient detail to enable the reader to study the current
literature in the field.
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190 S. STENHOLM

The electromagnetic field in the laser has a very high intensity and
may consequently be treated classically. This can be justified by the
correspondence principle, which states that quantum mechanics goes
over into classical mechanics for large quantum numbers. The field
in an optical cavity is characterized by a discrete set of eigenmodes.
The atoms or molecules in the cavity are excited by a pumping mech-
anism involving discharge currents and atomic collisions. The actual
processes taking place are very complicated and we do not consider
them in any detail. The pumping causes electronic transitions to
a large number of excited states, of which some pairs are in resonance
with the cavity eigenmodes. These induce electronic transitions which
will increase the field if atoms occur more frequently in the upper
states than in the lower ones. In thermal equilibrium the lower states
are always more frequently occupied, i.e. the lower energy levels have a
higher population than the higher levels. Therefore the reversed situa-
tion in a laser is called population inversion. When the amplification by
the resonant transitions in the gas exactly compensates the losses in the
cavity, the laser oscillates in a steady state. If the gain is higher than the
losses the intensity increases until a new equilibrium is achieved.
Thus it is important to consider the nonlinear properties of the laser,
as the saturation behaviour determines the output intensity.

In a gas laser the atoms move with a velocity distribution determined
by the temperature of the gas. The atomic transition frequencies are
Doppler shifted so that the gas undergoes resonance transitions over a
broader range of frequencies than a stationary atom would. The reso-
nance frequencies are distributed inhomogeneously and the transition is
said to be inhomogeneously broadened.

The classical field may be determined from Maxwell’s equations
once the polarization of the medium is given. This polarization is,
however, caused by the electromagnetic field present in the cavity
and can be calculated from the Schrodinger equation. The polarization
to be inserted into Maxwell’s equations is thus a function of the electro-
magnetic field in the cavity. This dependenee gives a condition for
self-consistency of the field, and it determines the operating point of
the laser. This model of a gas laser has been discussed in great detail
by Lamb®®4-37-58 in a third order perturbation approximation. The
theory has been successful in explaining the experimental results and it
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has provided useful concepts for more general treatments. We will
later quote both theoretical and experimental work which show the
usefulness of Lamb’s approach. Another approach is used by
Haken'3%-3%:49) to obtain similar results. Work has also been performed
in the Soviet Union®> and some of the earlier results are summarized
by Fain and Khanin.!2%

2 Foundations of Semiclassical Laser Theory
2.1. The electromagnetic field

The electromagnetic field in a cavity is determined from Maxwell’s
equations

B
E=-— 1
V x 2 (1
VxH=J+ %]tz (2)
together with
D=¢E+P, B=_yH (3)

where P is the macroscopic polarization of the medium. The losses due
to imperfect reflections in the cavity end mirrors and losses elsewhere
serve to determine the intensity level of the laser and they are described
by a phenomenological conductivity ¢ chosen to give the correct damp-
ing. We have

J = oE. 4)

Eliminating the magnetic field H and the current J in favour of the
field E we find
E 0°E 2P
Vx(VxE)-l—an-(,;%—,uos()W:—NOFI;. (5)
The polarization P contains parts which oscillate with frequencies

within a narrow range only, so
P

ot~

—Vv?P. (6)

where v is the mean frequency.
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The electric field is expanded in the cavity eigenfunctions as

E(r.0) = ) 4,(0U,r) )

where the functions U,(r) satisfy
V x [V x Uyr)] = 10602, U,(r) = 0 (8)

and the boundary conditions of the cavity. The eigenfrequency of the
cavity mode is Q, and as uoe, = ¢~ 2 the corresponding wave vector is

Q
K,| = = = Q,\/eotto. ©)

C
The polarization in the cavity may also be expanded in the cavity
eigenfunctions as

Pr,1) = Y P()U,r). (10)

Because the cavity eigenmodes form an orthogonal set it follows from
(10) that

[ dP(r, 1) . Uy(r)

P(t)="—F5——5— 11
n(l) “‘d3r{U"(r)]2 ( )
Inserting (10) and (7) into (5) and using (8) we obtain
d24 (1) o dA4,1) 5 v?
- - A1) = — P1). 12
de? + g dt + QA0) & ) (12)

For the simple time dependence A, exp (—ivt) we find on the left-hand
side of (12) the factor

SENC R N Q=(Q,+v)(Q, -+ v
) &9
N (g vt ii> (13)
280

because resonance interaction can take place only for v = @, The
half-width of the resonance is Av = o/¢, and the cavity Q value may
be introduced in the usual way

= =2 (14)
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This relation is used to eliminate ¢ from (12) and gives

d24() v dA0) v2
0 T R A () = — P1), 15
Bt a T B = P (1)

where we have allowed Q, to depend on the mode index n. In real laser
cavities Q, is very high (=~ 107).
The time dependence of ;1,, is at the frequency v, and we write

Aty = E (1) cos [v,t + @,(t)] (16)

where E (t) and ¢,(t) are slowly varying compared to cos v,t and sin v,t.
Only the part of P, which oscillates at v, (near v) will be important as
the distance A between the cavity eigenfrequencies is much larger than
the width of the cavity resonances, Av < A The polarization will,
however, have a phase shift with respect to the field (16) and we write

P (1) = Ct)cos [v,t + @ t)] + S, (&) sin [yt + @u1)] (17)

where C,(t) and S,(t) are slowly varying, We introduce the ‘“‘ansatz’ (16)
and (17) into (15) assuming that the small quantities E, ¢, o, Q; ' E and
Q. '@E can be neglected (the last two are small because Q, is assumed
large). The frequency of oscillation v, is very close to the cavity eigen-
frequency @, and we proceed as in eq. (13)

Vot Q, + @ x 2y, (18)

We then equate the coefficients of the rapidly varying sine and cosine
terms separately and obtain

[ + Gal) — QJED = — 3 €0 (19)
&g

B+l Em= L s (20

n\t ann.'——ESOn‘ )

These two conditions serve to determine the amplitude E, and the
frequency v, when P, is known. Both unknowns occur in both equations,
making a simultaneous solution necessary. In practice, however, it is
usually sufficient to determine the amplitude from (20) assuming that
v, = , and then determine (v, — £,) from (19).
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In a laser the optical wavelength A (x~1 y) is much shorter than the
length of the laser L (=1 m), and the mode number n is high. The
detailed structure of the cavity modes has been discussed by several
authors: Fox and Li®!3? and others (!7-18.98.6.55 The relevant
features for laser operation are retained in a model where the laser
cavity is assumed to be one-dimensional with length L. A coordinate
system is introduced with the laser axis along the z-axis and the
eigenmodes are

Ufz) =sin K,z (21)

with

Q =
K,=—"==n (22)
c L

The electromagnetic field is transverse and thus we have two modes
for each K, It is, however, often convenient to assume that we suppress
one mode by Brewster windows and consider only one mode for each

K,

2.2. The polarization of the atoms

The uneven spacing between the atomict energy levels taking
part in the laser action enables us to fix our attention on one pair
|ap, |b) as only these will be in near resonance with the cavity modes
at which oscillation takes place. The pumping mechanism is considered
phenomenologically by an excitation probability A, per unit time and
unit volume into the state [ (x = a or b). The two states are assumed
to decay to lower levels with decay constants y, and 7y, respectively;
these may be calculated from a Wigner-Weisskopf approximation
(see Scully and Lamb®®). The energy difference hw = A(W, — W,) is
in near resonance with the cavity modes €, which are going to perform
laser oscillations. The situation is illustrated in Fig. 1.

When an atom is oscillating between the two levels |a>, [b) its most
general state is

[W(0)) = a(t)]a) + bit)|b> (23)

+ For simplicity we take the active medium to consist of atoms.
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/ -
f fa>

w = WG — Wb / 7\ b

A4 |b>

F1G. 1. The transition between two states in the atom with energies h W, and 7}y,

is nearly in resonance with the cavity mode. The populations are increased by

the phenomenologically described pumping rates 4, /4, and decreased by
decay to lower states with rates 3, 7).

where af(t), b(r) are complex amplitudes. As we want to consider
ensembles of atoms we introduce the density matrix

a*a ab*
p = (24)
ba*  b*b
p is a reduced density matrix as we have excluded all atomic levels

but ap, |b); this fact is seen in the decay of Tr p = |a|* + |b|%, due to
transitions to lower states. The unperturbed Hamiltonian is

W, 0
hHy = h (25)
0o W

and the transitions are (in the dipole approximation) caused by

YhV, = —eYr . E (26)

where i runs over all atoms present in the cavity. In quantum electronics
the interaction (26) is more useful than the corresponding form with
the vector potential of the field. In the dipole approximation a canonical
transformation shows the equivalence of (26) and the vector potential
form of the interaction®®. When we consider only one atom at a time,
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we can neglect the summation in (26) and write the matrix representa-

tion
Vaa Vab
V= . (27)
Vba V;)h

The transition |a) — |b) is a dipole transition induced by the matrix
elements

hV,, = hV}, = —elar|b) E.

We assume that the matrix element p = e{al|r|b) is real It follows
from symmetry arguments that the diagonal elements vanish

a|r|lay = <b|r|b> =0
and the perturbation is written

0 1
V= — gJE|: ] (28)
1 0

The decay parameters are introduced as the matrix

Yo O
r— [ ] (29)
0 b

and the equation of motion is

. d .

iq P =[Ho+ V.p]. —3ilp + pI) (30)
The off-diagonal elements are found to have a decay constant
Yab = 3(7a + 75)- The induced dipole moment is given by

0 aa a
Tr (erp) = Tr[p ] [ P b] = 90w + Ppa) (31
0 ©lLpwa Pus

So far we have considered the density matrix for one atom only.
The macroscopic polarization (10) is composed of contributions
from all atoms which at the time ¢ happen to be at the point z inde-
pendently of their previous history. Let 1(v, zy,t,) be the creation
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probability of atoms in the state |o) at the point z, and the time ¢,
with velocity v along the z-axis. The corresponding density matrix
at time 1 > t, is p(a, zq, 1o, t) With

) [6““ ° } (32)
(X, Zg, L. 1) = .
P o-lo 0 5.,

The density matrix at an arbitrary time { is then

t
Pz, 8) = 3 | Ag(vs 2o, to) plot Zg, Lo, 1) dt (33)

X T

where we have summed over all initial times ¢, < { with the proper
probability weight A,(v, z,, to) and considered atoms created in both
states. The atom starting at z,, at time t, with velocity v is at { at the
position

2=z + 0(f — to). (34)

We want to collect all atoms which were created at such z, that they
at a later time ¢t > { happen to be at the position z. We do this by
summing

L
p,z, .8y = {3z — 2(}) — v(t — D] plv, 2o, 1) dzq
0
L i i R
=3 [dzy | digAv.20,t0) 3z = zo — v(t — to)] pla, 2o, 20, 8).  (35)

We take the derivative (¢/0f) and obtain

op(v. z, 1, ) . o
%ﬂﬁ = Z/va[v, z — ot — 1 )ilpla, z — vt — ), 1, 1]

x

L
+ E JdZOJ dtg v, 2g. 10} 8z — 2o — 1t — 14)]
0

xX e &l

é .
X 5 p(a’ ZO’ lOv t) (36)

The first term is obtained from eq. (32) and the time derivative in the
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second term is taken from eq. (30). The excitation probability A (v, z, )
is assumed to vary only slowly in space and time and is replaced by
its average A,v). According to the expansion (7) and (16) the nth
component of the electromagnetic field is

Er,1) = A,H)U,r) = E,sin K,z cos (v,t + ¢,) (37

and the perturbation is

Vo) = — (9o/h) ) E, sin K,z cos (v,i + ¢,)
= — (¢/2h) Y E,sin K,z exp [i(v,t + ¢,)] + c.c.

The equations of motion are then

(a/ai) pau(vﬁ z 1, i) = ;'a(v) - 7apaa(1)« z,t, E)
—(ip/h) Y E,sin K,z()) cos (v} + @,) [palv. 2, 1. 1) — ppalv, 2,8, 8)] (38)

(0/01) ppylv, 2, 1, 1) = AyD) — 7p0s(v, 2, 1, F) + (ig0/h)
x 3. E,sin K,z(#) cos (vt + @,) [pasl(v, 2, 1, 1) — ppv, 2, 1, 1)] (39)

(0/00) papfv, 2, 1,1) = — YaPanVs 2, L, 1) — TPV, 2, 1, 1)
- (lSO/h) Z En Sin an(i) cos (V"i + (pn) [paa(v'iz’ t,i) - pbb(v’ Z, t’ i)] (40)

where
(Dy=z—v(t -1 (41)

is the position at time ¢ of an atom which at ¢ is at the position z.
The collisions between atoms are neglected for the moment, and the
atomic velocity v remains constant during the lifetime of an atom.

The subsequent calculations all rest on the equations (38)-(40).
The present derivation has been developed by Lamb®®, Sargent,
Lamb and Fork”# and Stenholm and Lamb®%.

2.3. Theory of a laser with stationary atoms

In order to illustrate the use of egs. (19), (20) and {38)—{40) we consider
the situation where atomic motion is neglected, i.e. we consider a set
of atoms with velocities very near zero. We set v = 0 in (38)+(40) and
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find that the i-dependence of the coefficients is eliminated. This, of
course, greatly facilitates the solution of the equations.

We start by considering oscillations in one mode only and omit
the index n. We may set the phase function ¢(f) = 0 in a steady state
as it lacks physical significance for one mode. The resulting equations
admit an exact solution, but for notational simplicity we assume in
the following that

implying that the two atomic levels decay equally rapidly. This is a
rather unlikely coincidence, but it does not introduce any significant
physical consequences because y, and 7y, are of the same order of
magnitude in real lasers. The actual pumping rates are, however, to
be replaced by effective rates® ). This is seen when we set the electro-
magnetic field E = 0 in egs. (38), (39) and find for the population
difference probability the expression

Paa — Prp = jj - Al_b (42)

Ta b

A necessary condition for the onset of laser oscillations is that this is
positive, and if the gammas are replaced by an average value y we
have to replace the pumping probabilities 4, and A, by effective prob-
abilities A, and 4; such that

7 e — ) = (A7) — (A7)

After this we may neglect the difference between the gammas.
The function cos vt introduces rapid variations into the off-diagonal
elements p,,. We eliminate these by introducing

p1 = exp (ivt) pgy (43)

and set

exp (+ivt) cos vt = 3,

because the neglected terms vary rapidly and average to zero. This



