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Preiace

There is a paradox in the growth of scientific knowledge. As information ac-
cumulates in ever more intimidating quantities, disconnected facts and im-
penetrable mysteries give way to rational explanations, and simplicity emerges
from chaos. Gradually the essential principles of a subject come into focus.
This is true of cell biology today. New techniques of analysis at the molecular
level are revealing an astonishing elegance and economy in the living cell and
a gratifying unity in the principles by which cells function. This book is con-
cerned with those principles. It is not an encyclopedia but a guide to under-
standing. Admittedly, there are still large areas of ignorance in cell biology
and many facts that cannot yet be explained. But these unsolved problems
provide much of the excitement, and we have tried to point them out in a
way that will stimulate readers to join in the enterprise of discovery. Thus,
rather than simply present disjointed facts in areas that are poorly under-
stood, we have often ventured hypotheses for the reader to consider and, we
hope, to criticize. !

( Molecular Biology of the Cell is chiefly concerned with eucaryotic cells,
as opposed to bacteria, and its title reflects the prime importance of the in-
sights that have come from the molecular approach. Part I and Part II of the
book analyze cells from this perspective and cover the traditional material of
cell biology courses. But molecular biology by itself is not enough. The eu-
caryotic cells that form multicellular animals and plants are social organisms
to an extreme degree: they live by cooperation and specialization. To under-
stand how they function, one must study-the ways of cells in multicellular
communities, as well as the internal workings of cells in isolation. These are
two very different levels of investigation, but each depends on the other for
focus and direction. We have therefore devoted Part III of the book to the
behavior of cells in multicellular animals and plants. Thus developmental
biology, histology, immunobiology, and neurcbiology are discussed at much
greater length than in other cell biology textbooks. While this material may be
omitted from a basic cell biology course, serving as optional or supplementary
reading, it represents an essential part of our knowledge about cells and should
be especially useful to those who decide to continue with biological or medical
studies. The broad coverage expresses our conviction that cell biology should
be at the center of a modern biological education.

This book is principally for students taking a first course in cell biology,
be they undergraduates, graduate students, or medical students. Although we
assume that most readers have had at least an introductory biology course,
we have attempted to write the book so that even a stranger to biology could
follow it by starting at the beginning. On the other hand, we hope that it will
also be useful to working scientists in search of a guide to help them pick
their way through a vast field of knowledge. For this reason, we have provided
a much more thorough list of references than the average undergraduate is
likely to require, at the same time making an effort to select mainly those that
should be available in most libraries. N

This is a large book, and it has been a long time in gestation—three times
longer than an elephant, five times longer than a whale. Many people have
had a hand in it. Each chapter has been passed back and forth between the
author who wrote the first draft and the other authors for criticism and re-
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vision, so that each chapter represents a joint composition. In addition, a
small number of outside experts contributed written material, which the au-
thors reworked to fit with the rest of the book, and all the chapters were read
by experts, whose comments and corrections were invaluable. A full list of
acknowledgments to these contributors and readers for their help with spe-
cific chapters is appended. Paul R. Burton (University of Kansas), Douglas
Chandler (Arizona State University), Ursula Goodenough (Washington Univer-
sity), Robert E. Pollack (Columbia University), Robert E. Savage (Swarthmore
College), and Charles F. Yocum (University of Michigan) read through all or
some of the manuscript and made many helpful suggestions. The manuscript
was also read by undergraduate students, who helped to identify passages
that were obscure or difficult.

Most of the advice obtained from students and outside experts was col-
lated and digested by Miranda Robertson. By insisting that every page be lucid
and coherent, and by rewriting many of those that were not, she has played
a major part in the creation of a textbook that undergraduates will read with
ease. Lydia Malim drew many of the figures for Chapters 15 and 16, and a
large number of scientists very generously provided us with photographs: their
names are given in the figure credits. To our families, colleagues, and students
we offer thanks for forbearance and apologies for several years of imposition
and neglect. Finally, we owe a special debt of gratitude to our editors and
publisher. Tony Adams played a large part in improving the clarity of the
exposition, and Ruth Adams, with a degree of good-humored efficiency that
put the authors to shame, organized the entire production of the book. Gavin
Borden undertook to publish it, and his generosity and hospitality throughout
have made the enterprise of writing a pleasure as well as an education for us.

We welcome readers’ suggestions and corrections, which should be sent
to us c/o Gavin Borden, Garland Publishing, Inc., 136 Madison Avenue, New
York, NY 10016.
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Prologue

} :

It is all too easy now to underestimate cells. We have known about them for
such large fractions of our lives that, for the most part, we cease being aware
of how remarkable they really are. Almost as soon as we learn our first rudi-
ments of science, we are told that all living beings are formed from cells, that
cells come into existence from the growth and division of preexisting ones,
and that they may exist either singly as unicellular organisms or as parts of
immensely complicated organisms that may contain billions of interacting,
highly specialized units. It has been their potential for great diversity of size,
shape, and function that has allowed evolution to proceed in such strikingly
different directions.

The mere cataloging of the different names and unique properties of
cells has very limited intellectual appeal. But the textbook dry facts take on
new meaning when we first use our simple school microscopes to look at the
tiny one-celled creatures like the amoebae or paramecia that inhabit drops of
pond water. Then the cell as an amazing moving body comes alive, and it is
natural to wonder what exact molecules it is made of and how it can so
regularly grow and divide to provide more of its kind. Until the 1950s, however,
this objective seemed far beyond our capabilities as scientists. Up to then we
had little choice but to focus upon the descriptive morphological approach,
using better and better microscopes to reveal more and more cellular struc-
tures. To these we frequently gave fancy names, like the ergastoplasm or chon-
driosomes, without understanding why they were there or how they func-
tioned. Not surprisingly, many found this approach unsatisfying and moved
on from cells per se to explore the underlying chemical reactions that were
becoming increasingly amenable to logical analysis.

These “biologists turned biochemists” soon discovered how cells use the
energy in food molecules to build up new biological molecules, thereby dis-
covering how cells can grow and divide without disobeying the thermody-
namic dictum that all chemical reactions must move in the direction that
maximizes the production of heat and disorder. This momentous achievement
greatly encouraged the increasing number of scientists who thought the es-
sence of cells lay entirely in their molecular organization and the enzymati-
cally mediated pathways by which their molecules are either broken down or
built up. There was, however, still great uncertainty about where genes fitted
into the ehemical picture, and particularly whether they had a direct role in
correctly linking together the hundreds of amino acids that make a typical
protein molecule. How this might occur was still conceptually quite unclear
as late as the 1940s, and no one expected the incredibly rapid pace at which
the nature and transmission of genetic information was worked out between
1953 and 1966. Then with the dominant role of DNA so clearly established, it
was very tempting to say that by understanding the nucleic acids we had
understood the essence of the living state and that the greatest challenges of
biology had been surmounted.

This is a view that we do not share. The interconnecting pathways be-
tween ATP and DNA, marvelous as they are, do not give us the living cell. Even
the simplest cells are far more complex objects than generally perceived and
vastly more ingenious than any computerized intelligent machine yet de-
signed. That this is so is strongly hinted at by simple observation. We do not
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have to see through the outer surfaces of cells to appreciate that the biological
organization that permits them to act in such rational ways must indeed be
incredibly subtle and versatile.

Consider for example the extraordinarily complex changes in cellular
shape that accompany the movements of fibroblasts. These connective tissue
cells are the principal makers of the extracellular matrix that helps glue to-
gether the tissues of multicellular organisms. Within animals, fibroblasts must
constantly be prepared to move into areas of newly forming tissue. Removed
from the animal and grown in culture, they are accessible to microscopic
analysis, and the morphological changes that accompany their passage from
one point to another have been extensively documented through cine-
matographic analysis.

The isolated well-fed single fibroblast is thus revealed to be a restless,
apparently unsatisfied creature unable to stay quiet but instead internally
programmed to move. It and all its progeny will continue moving and growing
until the flat surface of the plastic dish is covered with a single layer of closely
packed cells. Moving fibroblasts bear a resemblance to amoebae with their
extending pseudopodia (false feet) that we first saw in our early school science
classes, but the details of their respective motions are not the same.

Fibroblast movement is initiated by the rapid, virtually frenetic, throwing
out of filamentous extensions (microspikes) and sheetlike projections (lamel-
lipodia). Each of these projections can make firm attachments to the under-
lying surfaces ahead. Such attachments lead to a forward flow of the cell's
cytoplasm and its enclosed nucleus. Many many more such locomotor pro-
tuberances are pushed out than ever make firm attachments, and those that
fail to attach are swept up as “ruffles” in the backward flow of the upper cell
surface that eventually sends them to the rear of the cell. Large numbers of
potential adhesion points can thus be sampled, with firm union made only
to the most favorable sites.

The capacity of fibroblasts for long persistent solo excursions is not a
property of all cells. When, for example, single epithelial cells of the sort that
line our intestines or skin are placed in culture, they show no tendency to
move about. The locomotor behavior of a given cell type thus appears to be
highly foreordained and, like virtually all other cellular events of consequence,
is hardly ever left to chance. As a result, the exact final position of a given cell
within a multicellular organism arises from a myriad of well-regulated bio-
chemical steps that effectively give the cell no choice but to come together
harmoniously with other cells in a particular configuration.

To understand how these logical steps unfold, we clearly must probe
beneath the cell surface. Happily we now possess the highly sophisticated
microscopic, biochemical, and genetic engineering procedures to let us tackle
on virtually equal odds the cell’s almost overwhelming complexity. We have
already found that the apparently amorphous cytoplasmic mass contains in-
terlaced patterns of specific fibrous protein aggregates. These filamentous
structures, themselves built of smaller subunit protein molecules, are assermn-
bled into the elaborate scaffolds and molecular machines that give rise to
directed cell movements.

As this book unfolds, we shall relate how various cell structural elements
are built and maintained by specific interactions between complex molecules.
And with less precision we shall outline how they enable a cell to grow and
divide and how they generate the metamorphoses of the cell's architecture
that we call cell movement and differentiation, which enable cells to partici-
pate in the construction of multicellular organisms. We hope that we shall
also convey the sense of great mystery that surrounds the many problems
that we do not yet know quite how to handle, the feeling of marvelous ex-
citement that comes from the great achievements of today’s cell biology, and,
last but not least, the logical as well as the optical beauty of cells.




Mobile behavior of mouse fibroblasts (3T3 cells), as revealed by
phase-contrast microscopy. (Left panel) As the cell flattens down
upon a surface, needlelike microspikes and sheetlike lamellipodia
are projected outward to seek suitable attachment sites.
Intermittently, the lamellipodia fold back on themselves (“ruffle”)
before extending again. (Center panel) After flattening down,
fibroblasts assume a polarized shape with leading lamellipodia and

begin to crawl along the surface of the culture dish. In this series of
four micrographs we observe an abrupt change in direction. (Right
panel) In going through mitosis, a flattened cell rounds up prior to
formation of the mitotic spindle; the two daughter cells reassume a
flattened position following their separation. In each panel,
successive micrographs taken at successive times are displayed from
top to bottom. (Courtesy of Guenter Albrecht-Buehler.)



A scanning electron microscopic view of part of the surface of a
mouse fibroblast in the process of flattening. Microspikes and
lamellipodia project outward at the ruffling edges while large
numbers of hemispherelike projections (“blebs”) project from the

region over the centrally located nucleus. The insert shows a lower-
magnification view of the entire cell, whose diameter is about 25 pum.
(Courtesy of Guenter Albrecht-Buehler.)




Paths of cell migration are revealed by cells moving on a surface
coated with tiny gold particles. Extending microspikes and
lamellipodia pick up the loose gold particles and help bring them
back over the cell body where they are engulfed (phagocytosed) into
the cell. Such events create clearings in regions through which cells
have moved. In dark-field illumination, the tracks appear black while
the gold-particle-filled cells glow brightly. (Courtesy of Guenter
Albrecht-Buehler; reproduced from J. Natl. Cancer Inst. Monograph
60, 1982.)

(a) Scanning electron micrograph of a track, showing the many
tiny gold particles on the substrate, the cell, and the particle-free
track left behind by the cell (arrows). Bar indicates 20 pm. (b) Dark-
field micrograph of the branching track of a mother 3T3 mouse cell

that started at “s” and divided at “d" into the two similar tracks of
the sister cells “c1” and “c2.” Bar indicates 500 pm. (c) Collision
between two 3T3 mouse cells (c1 and c2). Within the circled area the
two cells have bounced off each other as if they were colliding
billiard balls. Bar indicates 500 wm. (d, e) Dark-field light micrograph
(d) and scanning electron micrograph (e) of migrating PTK 1 (rat
kangaroo) cell groups (g). In (d), “s” points to single cells that
migrated little. Bars indicate 500 um (d) and 50 wm (e). (f) Tracks of
guided 3T3 cells (bright white structures) on a checkerboard of
guiding lines (whitish lines). The cells follow the lines but at the
intersections probe into optional directions, as indicated by the
small sideways “thorns” in the tracks at these points (arrowheads
point to a few of these thorns). Bar indicates 500 pm.



Very small autonomously moving cellular fragments (microplasts) are
often generated following exposure of cells to the cytoskeleton-
disrupting drug cytochalasin B. Though they lack a nucleus,
microplasts can flatten, ruffle, and bleb, showing their possession of
organized functional cytoskeletal elements. (Courtesy of Guenter
Albrecht-Buehler; reproduced from J. Natl. Cancer Inst. Monograph
60, 1982.)

(a, b) A ruffling microplast (mp) near the edge of a flattening
human cell (cell) for size comparison. Bar indicates 20 pm. Time
lapse between the two pictures is 35 seconds, showing the

XxXxviu

movement. (¢, d) Two photographs of a ruffling microplast taken 15
seconds apart. One of the many ruffles is indicated by “ru.” Bar
indicates 10 pm. (e, f) Two photographs of a blebbing microplast
taken 10 seconds apart. One of the many blebs is indicated by “bl.”
Bar indicates 10 uwm. (g, h) Electron micrographs of a typical
microplast sectioned parallel to the flat surface on which it sits.
Visible are peripheral actin-containing microfilaments (mf),
microtubules (mt), and intermediate filaments (if). Bars indicate 10
pm (g) and 1 pm (h).
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