Software Frameworks
and Embedded
Control Systems

LNCS 2231

ControllerManager
i —
2 | doContro @ |doContro

Alessandro Pasetti

Software Frameworks and
Embedded Control Systems

@) Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Author

Alessandro Pasetti

ETH-Zentrum, Institut fiir Automatik
Physikstrae 3, 8092 Ziirich, Switzerland
E-mail: pasetti @pnp-software.com

Dissertation der Universitidt Konstanz
Tag der miindlichen Priifung: 8. Juni 2001

Referent: Prof. Dr. Wolfgang Pree
Referent: Prof. Dr. Kai Koskimies

Cataloging-in-Publication Data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Pasetti, Alessandro:
Software frameworks and embedded control systems / Alessandro Pasetti. -
Berlin ; Heidelberg ; New York ; Barcelona : Hong Kong ; London ; Milan ;
Paris ; Tokyo : Springer, 2002

(Lecture notes in computer science ; Vol. 223D

Zugl.: Konstanz, Univ., Diss., 2001

ISBN 3-540-43189-6

CR Subject Classification (1998): C.3, D.2.11, D.2.13, J.2

ISSN 0302-9743
ISBN 3-540-43189-6 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation. reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer- Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Boller Mediendesign
Printed on acid-free paper SPIN: 10845761 06/3142 543210

Preface

Professionally, the defining experience of my life was a period of nine years as
control systems engineer with the European Space Agency (ESA). Given this
background, it was perhaps inevitable that when, in 1999, I decided to start a new
career as a software engineer I should choose as my area of work software archi-
tectures for embedded control systems. As it turned out, this was a lucky choice.
After decades of academic neglect, embedded software is now beginning to recei-
ve the attention to which its ubiquity in everyday devices and its presence at the
heart of many safety-critical systems entitles it. The novelty of the field means
that much of the work that needs to be done consists in transferring to embedded
systems the technologies and development practices that have become so preva-
lent in other fields. Following this line of research, I have concentrated on apply-
ing object-oriented software frameworks to embedded control systems. Frame-
work technology has enjoyed wide currency for at least five years. Although it has
proven its worth as a software reuse technique in many domains, it has been shun-
ned in the embedded world mainly because it tends to be associated with lavish
use of CPU and memory, both of which have traditionally been in short supply in
embedded systems. Times are changing, though. Hardware advances are expan-
ding the resources available to embedded systems and their adoption of frame-
work technology no longer looks far-fetched or unrealistic.

The first objective of this book is to show how object-oriented software frame-
works can be applied to embedded control systems. Software design may not be
an art but it is certainly more of a craft than a science and teaching by example is
in my view the best way to transfer design experience. I have accordingly chosen
a case study as the means to make my point that framework technology can aid the
development of embedded control software. The target application of the case stu-
dy is the attitude and orbit control system of satellites. This domain is broader and
less structured than the domains to which frameworks are normally applied. This
led me to develop a concept of frameworks that was rather different from that
proposed by other authors in that it gives a more prominent, or at least a more ex-
plicit, role to domain-specific design patterns. The second objective of the book is
to discuss this new view of software frameworks and to present some methodolo-
gical concepts that I believe can facilitate their development.

This book is therefore written with two audiences in mind: developers of em-
bedded control software will hopefully be inspired by the case study in the second
part of the book to apply framework technology to their systems, while resear-
chers on software architectures might be moved to rethink their conceptualization
of frameworks by the material presented in first part /elf the book. The link between

VI Preface

first and second part lies in the use of the concepts introduced in the methodologi-
cal sections of the book to describe the case study framework.

One of the functions of a preface is to offer a path through the book to prospec-
tive readers. The key chapters are 3 and 4, introducing the concepts of framelet
and implementation case, and chapter 8, giving an overview of the design prin-
ciples behind the satellite framework. Hurried readers could limit themselves to
these three fairly self-contained chapters, which would suffice to give them a
rough idea of both the methodological and technological contributions made by
the book. The framework concept and the methodological guidelines for frame-
work design are presented in chapters 3 to 7. The case study is covered from
chapter 8 to the end of the book. Readers who are not familiar with satellite con-
trol systems should read chapter 2 in order to acquire the domain background ne-
cessary for an understanding of the case study.

The satellite framework is presented as a set of design patterns that have been
specifically tailored to the needs of satellite control systems. Each chapter in the
case study part of the book covers one or a small number of related design pat-
terns. These chapters are to a large extent independent of each other and could be
read in any order or even in isolation of each other. One way to see this book (or
at least its second part) is as a repository of design patterns for embedded control
software development.

The appendix at the end of the book contains synoptic tables listing the archi-
tectural constructs offered by the satellite framework. The lists are cross-
referenced and can serve as an aid to navigate the framework design presented in
the book.

This book describes the satellite framework at the “design pattern level”. The
satellite framework also exists as a publicly available prototype and its full design
documentation and code can be downloaded from the project web site'. Readers
are invited to access this material but they should bear in mind that the code is of-
fered without any guarantee of correctness and that its quality and completeness
are those required for a proof-of-concept prototype. They should also be aware
that the satellite framework project is a “living project” and its web site is con-
stantly being updated as the framework design and implementation are reviewed
and modified. Hence, as time progresses, inconsistencies will inevitably arise with
the content of this book.

Having explained what the book offers to its readers, I should write a few
words about what it expects of them. The focus is on object-oriented frameworks
but no effort is made to explain the principles of object-oriented design which are
assumed known to the readers. Similarly, familiarity with the design pattern con-
cept is both assumed and necessary. Some background knowledge of framework
technology would be useful but is not essential. No prior knowledge of satellite
control systems is assumed, all the necessary background being offered in chapter
2. I have made every effort to make the case study as self-contained as possible

! Its address is subject to change. The site can be found with any internet search engine by
searching for “AOCS Framework”.

Preface VII

but I suspect that full appreciation of the solutions it offers requires at least a pas-
sing acquaintance with embedded control systems. Class diagrams are in standard
UML and pseudo-code examples are written using C++ syntax with the addition
of the interface construct from Java which I find simply too useful to ignore.
Finally, I wish to thank Wolfgang Pree and Kai Koskimies who reviewed the
first draft of this book and Jean-Loup Terraillon, Ton van Overbeek, Richard
Creasey, and David Soo who, in various capacities, supported the satellite frame-

work project.

August 2001 Alessandro Pasetti

Contents

1

Introduction and Context 1
1.1 The Embedded Software Problemc....cccoivviriciniinccinnniccnicncnn 1
1.2 Empowering Application Specialists.........cccccovivevienicniiniininnniinnicsennnne 6
1.3 The Component Software Challengecccocveermeeiviiiicncneniniiiinnecne 9
1.4 Objectives and ContribUtionS........ccoceeevieniiierieerniniinvereseesneeneeneesnescans 13

Attitude and Orbit Control Systems (AOCS) 17
2.1 AOCS SYSIEIMS ..oiiviiriireieneiieieeiireeeer ettt sereee s e srreeeacaresesesnnaassnseresenunns 17

211 AOCS FUNCHONScoiiuraeiniiiieniirriteeeeeieseesiaaatsrnessesieseesseesersessenses 19

2.1.2 AOCS Operational Modes..........cccovevvivvniennnieieinnerrinneneesennnens 23

2,13 AOCS URNIES...ciiiiiiieienerie et seets s seeis vt s nesbesaentsetesbesssenaas 25

2.1.4 The AOCS SOftWare..........cceceereririnreeeeerecnssie s eve s see e 26
2.2 The AOCS and Other Control SYStemScccrervmrerienererermrecrerensiennanes 27

Software Frameworks 29
3.1 Frameworks, Components, and Inheritance.............c.ccooveveveieveireisnane.. 33
3.2 A More Complete View of Software Frameworksc.ccccccoevne.e. 34
3.3 Frameworks and Autocoding ToOIS..........cccceeveeerieieviciereecesceeeeaes 40
3.4 The Methodological Problemcccocouereeveriiceeiceereeveesseeseeeae 41

3.4.1 Design Patterns and Abstract Interfaces Vs. Concrete Objects42

3.42 Support for Design Patterns and Hot-Spots..............cocerveriennnnen. 43

3.43 lterative System Specificationcooeveveveeereceeeeereeeeeeeee, 44

3.4.4 Designand ATChiteCtUIecccovvviivieiirieiiree e reeee e 44

3.45 A Methodology for Frameworksc.ccccevineiueceiiveeeereeeeenennne 46

Framelets and Implementation Cases 49
4.1 The Framelet CONCEPL.........covviiiriinieiviiiriiieisteteseseeeeseeeseeeeeeesesenessns 49

4.1.1 Implications for the Design Processccooovevvrveernrerieceenenn. 52

4.1.2 Framelets, Design, and Architecture................occooveverevevererenennns.. 52

4.1.3 Framelets and Aspect-Oriented Programming............................. 54

414 Framelet FEAtUesccovvuvviviriieceieeeceeeceeeee e 56

4.1.5 Framelet CONSITUCESoovvviervivieeeieeeeereteseeeeeeee e eesen s 57

4.1.6 Framelet HEUTISHCSoocurneeeeeecicccec e, 57

4.1.7 Framelets in the AOCS Framework............coo.oeveememieeererieeeeian, 59

4.1.8 Related APProaches............cccocoveiiiiiirereennrviierieieeereeeeeeese e 60
4.2 The Implementation Case CONCEPL............covvviviieeereeereeireeerersresesesseeens 62

4.2.1 The Three Roles of Implementation Cases.............ccooeeeeueerueenen.n. 63

X Contents

5

4.2.2 Implementation Case Scenarios and EXtensions............cccocccueerenene 64
4.2.3 Description of Implementation Cases..............c.ccccerrceeirarenneeennn 65
Framework Specification 69
5.1 How Important Is Specification?c.ccceveervriierinnnicrnieceernneneecceenns 69
5.2 An Alternative Specification Approach...........c.ccoeeevviniecnrcnnnrieceenens 71
5.3 AnExample from the AOCS Case Study........cocccevenvininnnnveneriecennn 75
Framework Design 79
6.1 Overall Approach..........ccoveveririreininiiinr vt 79
6.2 Alternative APProachesccovveveeeirirniinnnneesesesreereseeeesees e 82
6.3 The Framework Concept Definition Phase..............c.ceovvveveinriennennnn, 83
6.3.1 Definition of General Design Principles.........ccoeeveririrererererennnnn, 84
6.3.2 Identification of Domain Abstractionsccccccooveveveremruirnnn.. 85
6.3.3 Construction of the Framework Domain Model............................ 85
6.3.4 Identification of Framework Hot-SpotS...........ccoovveveveeverveeeannn, 86
6.3.5 Identification of Framework Design Patterns................ccoocoeuun..... 86
6.3.6 Framelet Identificationcovuereveveeeiiicceecece s 87
6.3.7 Identification of Implementation Cases............coverevvveeeivnrererernen, 87
6.3.8 Identification of Alternative SOIUtIONSccoovvereeveeeeeerreeienan, 87
6.4 Framelet Concept Definitioncccovervrurvreoreeoreverimreressreererereeeerenen. 87
6.4.1 Identification of Exported Interfaces and Implementations........... 88
6.4.2 Identification of Framelet HOt-SPots...........c.ccvvvovereeerreceeeerenn, 88
6.4.3 Definition of Applicable Design Patterns............cocoeveeeeeerereresonnn. 89
6.4.4 Definition of Framelet Contribution to the Framework................. 89
6.4.5 Definition of Framelet Contribution to Reusability........................ 89
6.5 Framelet Architectural Definition.................cocovveeveeercneerrensreerernen, 90
6.5.1 Definition of Framelet CONStructsc.covvvvieerereeesesesseeerenaen, 90
6.5.2 Definition of Framelet Hot-Spotsco.cvovovoeueeeeeeeeeeeesrenennn, 91
6.5.3 Definition of Framelet Functionalities................cooevrveeeersrsrsrennn. 91
6.6 Framework Design Descriptionccc.ovueevveeereereeveeeeeeeeeeesssssnnnn, 92
6.6.1 Framework Concept Definition...........ccoovcuevveerereeeeeserersenan, 92
6.6.2 Framelet Concept Definitioncoooveeeeereeeeererereerereseserssnons 92
6.6.3 Framelet Architectural Definition...................cocooovvvovvevcervversnn., 94
6.6.4 Overview of Design Description Techniques...............oco.oon......... 94
6.6.5 Framelet INteractionsc.ccoeovvvvvueveeeecree e, 95
6.6.6 Examples from AOCS Case Study.............ooeeeveveeeeeereresrerrnn. 96
The User's Perspective 99
7.1 A Reuse-Driven Development ProcCess.............coovvveveeroeresereerersseesn, 99
7.2 The Functionality CONCEPL................ovveieeereerereesreseresesoeeeeeeesesoseon 101
7.2.1 Functionality TYPEScocccuevurvrvirereeeeieeeeeeeseeeesee e eees e 102
7.2.2 Mapping Functionalities to Architectural Constructs................. 104
7.2.3 Completeness of DeSCIiPtion............c.oeeeveveeevereeeeoeeerereson, 105

7.2.4 Mapping Requirements to Functionalities..................oooovevevevenn. 106

Contents XI

8

10

11

7.2.5 Functionalities in the AOCS Framework............ccovivviiinnininn. 108

7.2.6 Alternative Approachesccoovviiiiiiiinncices 108

General Structure of the AOCS Framework 111
8.1 The RTOS Example.......ccccoiviciniininiiinicniescncenencseenees 111
8.2 The Lesson for the AOCS.........ocoovviriierenieiencce e 113
8.3 Telemetry Management in the AOCS Frameworkccccecennenne. 115
8.4 Controller Management in the AOCS Frameworkcc.coceveeenrerennnne 117
8.5 The Manager Meta-patternc.cooerereirereriinienierenceeee s e 120
8.6 Overall StrUCtUre............cooiiiiee e 121
8.7 Architectural Infrastructure............c..cocovveevivsiininciecrerce e 123
8.8 Hierarchies of Design Patterns.........ccccoocveevevvneceisiecieiecenreers e 123
8.9 The Framework Design Processccccvvevieniivinieneniieeie e 125
8.10 From Design to ArchiteCtureccccoeeveeererieirireiecrcreeise e eesrenenens 126
8.11 Related WOork........cccooiviriiiiiiere et 128

General Design Principles 131
9.1 Boundary Conditionsc.coecvvirioerrnrenniiniieee e 131
9.2 An Object-Oriented Frameworkc.cocovvvreeeoeeereeeeeeeeeeeee s 131
9.3 A Component-Based Framework...............cccccoeeveveeiiicceeeiicecceeean, 132
9.4 Delegation of Responsibility.........ccocveeievcviviieerceiceeeeciiceee e 133
9.5 Muitiple Implementation Inheritance.................cccooovvvvcivrceeereeereenn, 133
9.6 External INfErfacesccccoeueueeminveiseeieicceeee s 133
9.7 BasSiC ClaSSeSc.corvericieiriririceecereee ettt 133
9.8 Time Management.........cceeveriieieeeeieeeriiee st es e s e e s e enese e 134
9.9 Language Selection...........cocoeveeieiriiiiiriereeeeeeie et en 135
9.10 Execution Time Predictabilityocooveeeeeirirrereveeeeeeeeesreeererenenns 135
911 Schedulingcocooviiieiiiireeseecn e 136
9.12 A Framelet-Based Framework................c.ooveueveerenseeeeeseeeeeeee s 138

The System Management Framelet 141
10.1 The System Management Design Pattern............cocovvvveeevevereeeneonn 141
10.2 The System Reset FUNCHOMNc..covviveiineiinreeeeresscersssesssesonesons 142
10.3 The System Configuration Check FUNCton............cocoovvveeeeeerveresrsnnnn, 143
10.4 Storage of Configuration Data.................cocevvvremevecerreeereereeeress e, 144
10.5 ReUSabilitycccouoviiiiiiiiiciiiieiieeccee et 144

The Object Monitoring Framelet 147
11.1 Properties and Property ObJectSccouevvuemrereeereeeeeeressererenans 147
11.2 Change ObJECtS........c.covcerieiniiieiieieceeceeecee e e e es s 148
11.3 The Monitoring Design Patterns..............cocooceveeeveeereereeeeseersrerenn, 150

11.3.1 The Direct Monitoring Design Patterncococoveeeeerervrsnnn... 150

11.3.2 The Monitoring through Change Notification Design Pattern..... 151
11.4 Implementation Case Example — 1ccorvvoveereeorrereeesrereser, 153
11.5 Implementation Case EXample — 2.........cc.oovoeveeeereeoreeieeeerern 154
11,6 Alternative SOIUIONSovveruceicicieeereee e see e ss e 155

T1.7 ReuSabilitycoovuiiiivcieiiiiieeiceeeeeee e es e 156

X1l Contents

12 The Operational Mode Management Framelet 159
12.1 The Mode Management Design Patternic.ccccevvvvvreeieenreenreennneennns 160
12.2 Mode Change ACHONScccerviarieirrieieieceeeriesiesrenresres e et rsaseneresnnen 163
12.3 Coordination of Operational Mode Changes..........cccccoeevenvcerenrecnnnnnn. 163
12.4 AOCS Mission Mode Managerc..coeveevearineneninarinnrnsseniaseesrsnnnens 164
12.5 Reusability.....cocooviiiiirieiiiiicieeiereee ettt 165

13 The Intercomponent Communication Framelet 167
13.1 The Shared Event Design Pattern..........cooevevviiveeecereieeeeeseeseeeresenearins 167
13.2 The Shared Data Design Pattern...............cccoceevvvvveriereereriereere s 169
13.3 AOCS Data.......ooeiiieieiieicrrcrrer ettt 170
13.4 Data POOISccoourireriiirricccieeite ettt sesen e 173
13.5 Implementation Case EXample — L....c.c.ccocoevvvvveeiecciereiiisiiei e 174
13.6 Implementation Case Example — 2...........cc.ceovrivverreciieiereereeeenn. 175
13.7 Implementation Case Example — 3ccccooovrirveirecececrereerereeeenenn, 177
13.8 Alternative Implementationsccce.evvviverererereeeeeeeeseeeeeeeeeeeeann, 178
13.9 Reusabilitycccoiiriiieree ettt 180

14 The Sequential Data Processing Framelet 183
14.1 Control Channels............cccovieieuiieiciieiiiiecieee oo, 184
14.2 The Control Channel Design Pattern.............c..ocovevevvieeerereerssrsennn,s 186
14.3 Implementation Case EXample............c....couovrueveveeeeereeesieeesesesenan, 189
144 Alternative SOIUtIONSovueveveieeieicrieeieeeeeee s, 190
14.5 ReUSADILILYcooveuiireitiiirieetctcc ettt s e s 192

15 The AOCS Unit Framelet 193
15.1 Abstract Unit Model...........cocoroeuireiriieiniiiiceiiess e eees e 194
152 The AoCSUNIE CIaSS ..ouiuiuiieeieiececeeeeeeeee oo 197

152.1 The AOCS Unit Housekeeping and Functional Interfaces........... 198
153 UNIE THZEETS ..ottt 200
15.4 Hardware Unit COMPONENSc.ocoveveeeeeesreereeeeeoes e 202
15.5 Fictitious AOCS URILS........coorvuiurirrniereeceereeneseeeeeee oo es s 203

15.5.1 The Fictitious Unit Design Patterncocooevvevereeerroreon, 204
15.6 Implementation Case EXample..............ooeeeevemeomremresooooooooo 205
15.7 ReUSADILILY ..ot 207

16 The Reconfiguration Management Framelet 209
16.1 Some Definitions............ccouoeueieuivvieiriceereeeeeeeeeeeseecesoooeooso 209
16.2 The Reconfiguration Management Design Pattern........................... 210

16.2.1 Intersection and Nesting of Reconfiguration Groupscc....... 213

16.2.2 Direct Access to Redundant Componentso............. 214

16.2.3 Preservation of Configuration Data................c.cooeoorvevvevovo . 215

16.3 ReUSADIIYoecvevimriiitictceeee e 215

Contents XIH

17 The Manoeuvre Management Framelet 217
17.1 Manoeuvre COMPONENLS.......cc.ooviiniiniiiiiinieieesiie e ans 217
17.2 The Manoeuvre Design Patternccoccovevevninnoiniencnieicncncoceinees 218
17.3 Manoeuvre INIHAtIONc.cooieiirinrii ettt 220
17.4 Alternative SOIUtION.......cccviiierencriiiienceec e 220
17.5 ReUSability....ccccociiiiiiiiiiiii et eere e s sree s 221

18 The Failure Detection Management Framelet 223
18.1 Overall ApProachccccooieiimiierececeer e e 223
18.2 Failure Detection Checks.......ccocveieeriniiieninececnee e 224

18.2.1 Consistency Checks......ccovoieierieiecieiiricceci e, 224
18.2.2 Property MONITOTINGccccorveiierieieiirereeceteniaieieseesessseesieseessecnas 225
18.3 The Failure Detection Design Pattern.............cccouevevvereeieiereerercreennene. 227
18.4 Alternative APProaches.............cceccuecerirererecriririnunsneceennsssassssresenanns 228
18.5 Failure ISOIation..........ccooooeciririiiiieieeecec et 228
18.6 Reusability........cccocviiiiirccieiceeeee et 230

19 The Failure Recovery Management Framelet 233
19.1 Failure RECOVETY ACHONSc.evrveeceeriieiietitee et e 233
19.2 Failure ReCovVery Strategycoooveeveviviiveeeiiieeecee st 234
19.3 Failure Recovery Design Pattern...............oovovevevveivevcvereereseesereseeeerin 235
19.4 Implementation Case Example — 1ccooeevevviriiierererereeeeeenn. 237
19.5 Implementation Case Example — 2..........ccocooovieenmerenreereesereee e, 239
19.6 Alternative Implementation....................cocooeeeeeeeeeeeeeeeeseeeeeeennn 241
19,7 REUSADILILY ...vvevevevercririeecinien sttt ete s e ses et sasasens 241

20 The Telecommand Management Framelet 243
20.1 The Telecommand Management Design Pattern.................cocooovn........ 243
20.2 The Telecommand Transaction Design Pattern.............cocoo.ovevvevennan... 246
20.3 Telecommand Loading.........c...couoiuvivieiiceiceecieieeesse oo 247

20.3.1 Implementation ConsSiderations.............cocoeevveveveverereroeeoonron, 249
20.4 Implementation Case EXampleccooovvvvmemreeeeeeeeeeeesesererenana, 250
20.5 ReUSADIIIEY ...c.oooviiiiiiiciciecct e e e 251

21 The Telemetry Management Framelet 253
21.1 The Telemetry Management Design Patternocoeoevvvovnovni. 253
21.2 Implementation Case EXample................c.ovreeeenromeerrrceserescereron, 256
21.3 Functionality List EXample................c..cocovroveereremmemrereeesooeoeoee s 257
21.4 Alternative Implementation.................cccoouereeeererereerereesereereeseso. 260
215 ReUSADIILY ...t e, 261

22 The Controller Management Framelet 263
22.1 The Controller Design Pattern.................oooveveveveeoerrerereereeseooeooo. 263
22.2 The Controller ABSIACtION.oovveeeereeeeeeeeeesreeeesresceeros oo, 264
22.3 Implementation Case EXaMpleooovveveeeeemeemoooeoeoesoooeoeo, 266

22,4 ReUSADILILYcoiuviiiiiieieieiies e e 268

XIV Contents

23 The Framework Instantiation Process 271
23.1 Step-by-Step INStANtAtIONccccovviiernreriece et reeerecee e 271
23.2 Framework Overheads............ccooovviiieiiiieiiiccnerintn s 276

Appendix 279

References 285

Index 291

1 Introduction and Context

There are so many books in print that the first duty of an author must be to explain
why a new one is needed. The present book is about the application of software
framework technology to embedded control systems and its core is the description
of a case study of a full object-oriented framework for a particular — but represen-
tative — class of embedded control systems. Its justification therefore requires ar-
guing the case in favour of the distinctiveness of these systems. This is done in the
next section with reference to embedded systems in general since their claims to
distinctiveness encompass and subsume those of the narrower category of control
systems. The following sections instead outline the long-term programme of rese-
arch within which the results presented here were obtained. The material in the
book only covers a small part of this programme (which, at the time of writing, is
still on-going) but understanding the latter helps understand the motivation and
intention behind the former. The chapter closes with a formulation of the objecti-
ves of the book and a summary of its contributions.

1.1 The Embedded Software Problem

It is probably true that, as many believe, nothing of any significance has been in-
vented in computer science since the late sixties. Possibly in order to compensate
for this dearth of new ideas, software engineers have proven exceptionally adept at
introducing new words for old concepts and at attaching new meanings to old
words. Whether for this or for other reasons, their discipline is plagued with ter-
minological confusion. It is therefore fitting that this book should begin with a de-
finition (with many more to follow in later chapters). In accordance with common
usage, the expression embedded system is used to designate a computer system
hidden inside a product other than a computer [95]. This definition can be turned
inside out to say that an embedded system is a computer system that is used to
control the product that contains it. Embedded systems are therefore the means by
which the power of software is harnessed to make the behaviour of non-computer
devices ~ from washing machines to satellites — more flexible and more controlla-
ble. The embedded software is the software that runs on an embedded computer
and that is the ultimate source of this flexibility and controllability.

In what sense is embedded software different from other types of software and
why does it deserve dedicated treatment? Answering this kind of question inevi-
tably exposes an author to the twin dangers of overgeneralization and oversimpli-

2 1 Introduction and Context

fication. These dangers are especially acute in the present case because of the ex-
ceptional diversity of embedded systems. Still, even where there is diversity there
can be average trends and general patterns and it is to them that the discussion that
follows applies.

At first sight, the differences between embedded and non-embedded software
have two aspects, functional and technological. Functionally and in a negative
sense — looking at what embedded systems are not or do not have — embedded
software is characterized by the complete lack, or at least sharply reduced im-
portance, of the user interface. This already sets it apart from other software since
the user interface in conventional systems accounts on the average for 50% of the
total development and coding efforts and, when a graphical user interface is used,
this proportion is even higher and can reach 90% [28].

In a positive sense — looking at functional features that embedded systems have
and other systems lack — embedded software is primarily distinguished by its di-
rect interaction with hardware peripherals. In the case of embedded control sy-
stems, for instance, the software always has to manage a set of sensors from which
measurements about the state of the variables under control are acquired and a set
of actuators to which command signals are periodically sent. The need to respond
to and control external hardware and external processes often results in timing re-
quirements being imposed on embedded software. Embedded systems must then
be built to ensure certain minimal response times or to guarantee a certain minimal
throughput. Meeting such requirements can have a decisive impact on the archi-
tecture of the software and timing aspects are invariably among the design drivers
of embedded software. Additionally, embedded systems are by their very nature
designed to operate outside direct human supervision. Indeed, their task is often to
replace or complement human supervision of a certain process or device. Stand-
alone operation requires a high degree of autonomy and reliability to be built into
embedded software.

Functional differences, though important, are not those that most stand out in a
comparison between embedded and non-embedded software. The truly remarkable
difference between the two is technological and relates to the vast gap that can be
observed between the level of technology that is now common in general purpose
computer systems and the level of technology prevalent in embedded applications.
When seen from the point of view of mainstream computer science, embedded
software projects often appear to be taking place in a time warp: the language of
choice remains C (with generous sprinklings of assembler), the dominant archi-
tectural paradigm is only now shifting from procedural to object-based, software
engineering tools are often ignored.

Technological backwardness is the norm even in fields that are perceived as
“high-tech”. In 1996, the author of this book was asked to take part in the review
of a control system for a large satellite being developed by a major aerospace
company for the European Space Agency and was astonished to find that its soft-
ware was entirely written in assembler (using a modular approach — as one of the
project engineers proudly declared). For another example, we can turn to the car
industry. As recently as 1997, the engine control software of a very popular line of

1.1 The Embedded Software Problem 3

middle-sized cars consisted of about 300.000 lines of C code that was poorly
structured because of its assembler heritage, and that, after years of changes to ful-
fill ever changing requirements, had become virtually unmaintainable [69].

Technological backwardness can be confirmed by inspection of some of the re-
cent reference books on software for embedded systems such as [95, 46, 59, 7].
Although all four texts mention C++ or object-orientation (sometimes even in
their titles) and give due emphasis to the virtues of the latter, the paradigm that
underlies most of the material they present is the traditional object-based or mo-
dular one. The same impression can be derived from the “Embedded Systems Ma-
gazine”, a prime reference for embedded engineers. Advanced software topics —
object-orientation, component technology, real-time Java and others — are some-
times broached but their adoption in practice remains controversial and is clearly
limited to a small minority of existing systems (for a typical example of this atti-
tude, see the cover article of the issue of August 1999 with the eloquent title of:
"Nuts to OOP!").

It might be expected that research would tend to redress the imbalance between
embedded and other software. In reality this is far from being the case. Discipline
folklore has it that while 99% of processors that are sold in a given year are used
in embedded devices, only 1% of computer scientists are working on embedded
software. These figures are difficult to verify but there is no disputing that the pa-
radox they point to — the overwhelming majority of software research being
focused on a narrow subset of all computer systems — is real.

Lack of interest on the part of software scientists can be largely explained by
the limited resources available to embedded computer systems which typically
have memories restricted to kilobytes and processor architectures of the CISC, 8-
or 16-bit kind. Application memory and CPU margins are correspondingly tight
and seldom leave any scope for applying the advanced software technologies that
are the staple of academic publications and that are so widespread in desktop
applications.

To some extent, this situation is self-perpetuating. Lack of research in embed-
ded software leads to lack of innovation and to software systems that are compa-
ratively small and simple. Since embedded devices are often mass-produced, pro-
fit margins are largely determined by hardware costs and manufacturers have an
incentive to continue using the minimalist processor configurations that have stif-
led research and innovation in the first place. Perhaps more subtly, lack of interest
in embedded software on the part of the research establishment has turned the
subject into one of computer science’s poor relations which hardly encourages
software scientists to enter the field and attempt to redress the imbalances descri-
bed above. The web of causal interrelationships between technical, economic and
socio-cultural factors that contribute to keep embedded and other software apart is
sketched in figure 1.1.

Recent developments, however, may herald a reversal of fortune for embedded
software and its practitioners. On the one hand, the continuing decline in hardware
costs is bringing more and more processing power within the budgetary envelope
of embedded software projects while, on the other hand, ever expanding consumer
expectations are putting increasing demands on the software, demands that can

4 1 Introduction and Context

only be accommodated by resorting to the same kind of technology prevalent in
the non-embedded world.

If disparity in the level of hardware resources were the only — or the main —
factor differentiating embedded from other software, then there should be no
reason to treat embedded software as "special”: as the resources available to em-
bedded developers are brought in line with those available to their desktop collea-
gues, one should see embedded and non-embedded software naturally converge
towards the same technological level and towards the same design and imple-
mentation practices. This is unlikely to happen and this is a symptom of a more
profound, albeit often overlooked, difference between much embedded and much
non-embedded software.

Lack of Academic
Interest

makes subject
unfashionable

Lack of Innovation

leave no scope for
advanced software
technology

H/W Limitations Backward S/W

leaves hardware to
determine costs

strong incentive
to retain minimalist
hardware configuration

H/W Determines
Profit Margins

Mass Production

Fig. 1.1. Why embedded software lags behind other software

Software design is always a difficult undertaking but it is especially so when
the persons doing the design have a poor understanding of the target application.
This problem occurs everywhere but it is more severe in the embedded world.
After all, the definition of embedded software given at the beginning can be para-
phrased to read: “an embedded software is a piece software for a system other
than a computer”. The software for an embedded system consequently has a so-
mewhat accidental character, it serves to embody functions that find their origin
and motivation in the non-software aspects of the system. Software development
for embedded applications is thus often characterized by the divorce between the
roles of the software specialist — the person responsible for the software develop-
ment — and the application specialist — the person responsible for specifying the

1.1 The Embedded Software Problem 5

application. The gap between the two is normally bridged by some kind of formal
description of the application to be developed such as user requirements or use
cases. The difficulty of exhaustively and unambiguously capturing the specificati-
on of a complex system means that, almost inevitably, as a project progresses, the
interface between the software and application specialists becomes a source of
personal attrition, schedule delays, cost overruns and specification misunderstan-
dings. This problem is all the more serious because more and more of the functio-
nalities of an embedded system are concentrated in its software and the split of
work between the software and domain specialist therefore results in a situation
where the heart of the application — its software — is designed, developed and te-
sted by persons who are not application specialists.

It is worth to make this point by means of an example. First, consider the case
of a software engineer who is asked to develop the software for, say, a new word
processing application. As an input, he would probably be given a set of user re-
quirements. Since he is familiar with word processors (because he has used them,
because he has studied them at university, because he has read about them, etc) it
is very likely that he would quickly understand them and would be able to assess
their quality by, for instance, spotting mistakes, gaps, and ambiguities. Additio-
nally, having a good "feeling" for word processing applications, he would be able
to judge whether the requirements he has received are implementable and would
quickly identify those that are critical and need special attention.

Suppose now that the same software engineer were asked to write the software
for, say, a GPS receiver (a typical embedded application). GPS receivers are likely
to be outside his typical domain of experience and knowledge and he would have
to rely completely on the formal description of the GPS software that he receives
from his customer. Firstly, he might have some trouble understanding it because
he is not familiar with the vocabulary of that domain (whereas he was perfectly at
home with the domain vocabulary of word processors). Secondly, he would not be
in a very good position to assess the quality of the inputs he receives and to iden-
tify potential problems due to inconsistencies and misunderstandings. These pro-
blems would eventually emerge but they would emerge only during application
implementation or, even worse, during testing.

It is obvious that, other things being equal, our software engineer would make a
much worse job in the second than in the first case and that the cause of this is the
fact that, in the second case, he lacks domain understanding. Our contention is that
the scenario described in the second example typifies embedded systems in gene-
ral and embedded control systems in particular.

Finally, and for completeness, it must be mentioned that in practice a common
means for the application engineers to by-pass their software colleagues and avoid
the problems and costs that arise at the interface between the two disciplines is for
them to write their own code directly. This, however, is not a viable solution in
any but the simplest cases: software development requires specialized skills that
normally only specialists possess. The solution to the difficulties discussed above
lies in optimizing the role of each of the two specialists in the application deve-
lopment process, not in ignoring the need for their cooperation.

