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Preface

One of the most important chapters in modern functional analysis
is the theory ofapproximate methods for solution of various mathematical
problems. Besides providing considerably simplified approaches to
numerical methods. the ideas of functional analysis have also given rise
to essentially new computation schemes in problems of linear algebra,
differential and integral equations, nonlinear analysis, and so on.

‘The general theory of approximate methods includes many known
fundamental results. We refer to the classical work of Kantorovich:
the investigations of projection methods by Bogolyubov, Krylov,
Keldysh and Petrov, much furthered by Mikhlin and Pol’skii; Tikho-
nov’s methods for approximate solution of ill-posed problems;; the general
theory of difference schemes: and so on.

During the past decade, the Voronezh seminar on functional analysis
has systematically discussed various Questions related to numerical
methods; several advanced courses have been held at Voronezh Uni-
versity on the application of functional analysis to numerical mathe-
matics. Some of this research is summarized in the present monograph.
The authors® aim has not been to give an exhaustive account, even.of the
principal known results, ’

The book consists of five chapters.

In the first chapter we study iterative processes: conditions for
convergence, estimates of convergence rate, effect of round-off errors,
etc. Much attention is paid to the convergence of iterative processes
under conditions incompatible with the contracting mapping principle
(the theory of concave operators, the role of uniformly convex norms,
and so on). The second chapter studies linear problems: methods for
approximate solution of linear equations, estimates for the spectral
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radius of ¢ linear operator, approximate determination of eigenvalues,
etc. The theory of semiordered spaces plays an important role. The
third chapter considers equations with smooth nonlinear operators,
employing ideas close to those of Kantorovich. Considerable attention
is paid to the situations arising in approximate methods which utilize
various simplified formulas. Topological methods are proposed for a
posteriori error estimates. Much of Chapters 1 to 3 borrows from the
above-mentioned advanced courses, which were given alternately by
Krasnosel’skii and Rutitskii; a few sections in the first and second chapters
were written by Krasnosel’skii and Stetsenko.

Chapter 4 is devoted to a systematic theory of projection methods
(method of least squares, the methods of Galerkin, Galerkin-Petrov,
et al.) as applied to the approximate solution of linear and nonlinear
equations, and approximate determination of eigenvalues. Most of this
chapter was written by G. M. Vainikko.

The fifth and last chapter considers approximate methods in a d|f~
ficult field of nonlinear analysis—the theory of branching of small
solutions. The authors have seen fit to present a short account of the
basic theory of formal power series. This chapter was written by Zabreiko

. and Krasnosel’skii.

The book includes a large number of exercises, ranging from the
simple to the very difficult.

G. A. Bezsmertnykh, N. N. Gudovich, A. Yu. Levin, E. A. Lifshits,
V. B. Melamed and A. 1. Perov offered valuable remarks and advice in
discussing various parts of the book. Several important remarks were
made by L.V. Kantorovich and G.P. Akilov after reading the manuscript.
The authors are deeply indebted to all those mentioned.

The authors
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Successive approximations

§ 1. Existence of the fixed point of a contraction operator

1.1. Contraction operators. Let A be an operator dutined on a set M
in a Banach space E, satisfying a Lipschitz condition

Jax — Ay s qfx —y]  (x,yeW). (1.1

If g < 1, A is called a contraction operator (or contracting operator).
Theorem 1.1. (Contracting mapping principle). Let M be a closed set

and assume that the contraction operator A maps W into itself: AM<M.

Then A has a unique fixed point x* in M, in other words, the equation

x = Ax (1.2)
has a unique solution x* in M.
Proof. Consider the following nonnegative functional on M:

O(x) = ||x — Ax| . (1.3)
Let x, be a minimizing sequence for ®(x):
lim ®(x,) = inf ®(x) = «.

Limd- XEER

Obviously,
as ¢(Axn) = I'Axn - Azxn” = q”xn - Axn“ = qd)(xn)v

and hence a = ga. It follows that « = 0.
Since

”x" - xm” = "xn - Axn“ + ”Axn - Axm“ + ”Axm - xm” §

S Ox,) + q|x, — x| + x,,),



2 SUCCFSSIVE APPROXIMATIONS CHAP. |
it follows that

D(x,) + ¥x,,) .

l 0 (n,m— 1),

%0 — xmll =

i.e., x, is a Cauchy sequence. Its limit x* belongs to MM (M is closed!).
The functional ®(x) is continuous, since by (1.1) ’

| @) — @) =[x — x| - |y - ]| =
She-yl+lax -y = + g fx - y].
Therefore ’
O(x*) = lim ®(x,) = 0,

and this means that x* is a solution of equation (1.2).
Suppose that y* is another solution of (1.2) in M. Then

Ix* = y*l = l4x* —ap*] < qfx* - p*|

and so [|x* — y*| = 0, ie, x* = y* |}

The most commonly studied contraction operators are defined on the
entire space E or on some ball T. In the latter case, it is convenient to
replace Theorem 1.1 by the following special case:

Theorem 1.2. Let A be a contraction operator on a closed ball
T = {x:|x — xo| < r} in a Banach space E, and let

[ Axo = xo| § 1~ gr. (1.4)

Then A has a unique fixed point in T.
To prove this theorem it suffices to verify the inclusion AT < T,
which is obvious: if | x — x,|| = r, then (1.1) and (1.4) imply the inequality

A% = xof < || Ax — Ax| + |l dxo — Xo| S gqlfx — xof + (1 ~gr = r.
Exercise 1.1.Let the function K{(t. 5: u} be jointly continuousint,se[a.b}, — x <u < .
and assume that
K, s;u) - K(t,s:0) < M(p)|u — v| (jul. lv] £ b).

Show that the operator

Ll
Ax(t) = [ K[ s: x(5)) ds
Ja



§1 EXISTENCE OF THE FIXED POINT OF A CONTRACTION OPERATOR 3

is defined on the space C of continuous functions on [a, b] and satisfies a Lipschitz condi-
tion (1.1) on every ball of C. Under what conditions is it a contraction operator on the ball

x| £ po?
Exercise 1.2. Under the assumptions of Theorem 1.1, show that the sequence Ax, =
X, (n =012,..) minimizes the functional (1.3) for arbitrary x,€ .

1.2, Use of an equivalent norm. Suppose that, apart from the basic
norm | - ||, the space E has another norm, which we shall denote by || |,
Recall that the norms | - || and | - ||, are said to be equivalent if there
exist positive constants m and M such that

mix| S lxle = M|x|  (xeE).

When the basic norm is replaced by an equivalent one, convergent se-
quences of elements in the space remain convergent, closed (open)
sets remain closed (open), etc.

If the operator A satisfies a Lipschitz condition with respect to one
norm, this is also true for any equivalent norm. Now it often happens
that A, though not a contraction, satisfies a Lipschitz condition with
respect to the original norm; however, by suitable construction of an
equivalent norm, 4 becomes a contraction. The principal difficulty in
investigating concrete equations usually involves constructing this
special norm.

As an example, consider a system of ordinary differential equations

d¢, ‘
*;:1 =fit.¢n. &) Gi=1,...,m),

or, in vector notation,

%’:— =f(t,x), (15)

where x(t) = {£,(1),.. ., &,{t)} is a vector-function with values in n-
space R". The problem of solving the system (1.5) with the initial condition
x(0) =0 (1.6)

is known to be equivalent to that of solving the vector integral equation

x(t) = f SIs. x(s)] ds . (1.7
[¢]



4 SUCCESSIVE APPROXIMATIONS CHAP. |

Assume that f (¢, x) is jointly continuous in t, x and satisfies a Lipschitz
condition in x:

fe.x)—=fenf=sLlx-y| (cyeR;0=t=T). (18)

Here and above | x | denotes the length of the vector x in R".
Consider the operator A defined by the right member of equation
(1.7):

Ax(t) = J SIs x(s)] ds. (1.9)
0

It is easily seen that, for any 7 (0 < t < T), this operator is defined in the
space C, of continuous vector-functions on [0, t] with the norm

x| = max |x(r)]. (1.10)

0st1s:
It follow§ from (1.8) that
| 4x — AYII Lr|x -yl (xyeC).
Therefore, if
Lt<1,

the operator A satisfies the assumptions of Theorem 1.1. Thus the problem
(1.5)(1.6) has a unique solution x,,(t) on the interval 0 < ¢t < min{T, 1/L}.

In fact, the problem (1.5)-(1.6) has a solution on the entire interval
[0, T]. To prove this, we may again use Theorem 1.1, introducing a
special norm in the space C;. Set

Ixle = [max el xt) (xeCp), (1.11)

St1sT

where L, > 0. Clearly,

T = ixle s I6le e,

i.e., the norms Nx[], and [|x|; are equivalent. Now by (1.8)

|4x — Ay|s = max
0stsT

et [ s - sl s s

< L max j el "e"‘"lx(s) )| ds =
0

01T



§! EXISTENCE OF THE FIXED POINT OF A CONTRACTION OPERATOR 5
v L
< L|x-y|, max j s = — (1 — e M) |x - y],.
0stsT Jo L, .

Setting L, = L, we see that the operator (1.9) is a contraction in the
norm (1.11), the constant being

g=1-e"T<1.

Thus the problem (1.5)-(1.6) has a unique solution x*(t) defined for all
te [0, T]
Another example is the equation

x(t) = j' K(t, s)f[s, x(s)] ds + (1), (1.12)
0

where x(t) is an unknown function, ¢(t) a given continuous function on
[0, T], K(¢, s) and f (s, x) are jointly continuous for0 < t,s < T, — o0 <
x < o0 and moreover

lf&x)—fey|S=Llx=—y| (-0 <xy< ). (1.13)

The right member of (1.12) obviously defines an operator 4 on the space
C of continuous functions on [0, T]. It satisfies the inequality

o KL
J4x ~ AVl S T2 =B x =yl (xyeC).
1

where | - ||, is the norm (1.11) and

K= max |K(t,s)].
0sSt,ssT
If L, 2 KL, then A is a contraction in the norm (1.11). It follows from
Theorem 1.1 that equation (1.12) has a unique solution on [0, T.

Exercise 1.3. Show that in the arguments of subsection 1.2 the norm (1.11) may be
replaced by the norm
Axley = max ™7 [x(t)
OSt3T
(for what values of L,?). .
Exercise 1.4. Prove that the linear Volterra integral equation

xtt) =[ K(,9)x(s)ds + ()
0

with continuous kernel K(t,s) (and continuous ¢{r)) has a unique summable solution.



6 SUCCESSIVE APPROXIMATIONS CHaP. |

1.3. Relative uniqueness of the solution. As a rule, concrete problems lead to equations
not associated with any well-defined function space. The same equations may be considered
with an operator defined in different subsets WM of different spaces E. Suppose that the
uniqueness of the solution of an equation has somehow been proved (say. using Theorem
1.1)in a subset M of a space E. Naturally. this does not imply that there are no other solu-
tions in the space E, or that there are no solutions outside E.

As an example, consider the equation

1
x(t) = j x*(s)ds. (1.14)
o

The operator A defined by the right member of this equation satisfies the assumptions
of Theorem 1.1 in any ball ||x|| £ p(p < }) in the space C of continuous functions on
[0. 1]. Thus the unique solution of equation (1.14) in the ball | x| < } is the trivial solution.
However, there is another continuous solution, (f) = 1.

Instead of equation (1.14), we could have considered the scalar equation x = x*. which
satisfies the assumptions of Theorem 1.1 on any interval ['— p. 0] (p < %), but it has two
solutions, x = 0 and x = 1. The scalar equation x = —x* has a unique solution -(the
trivial solution) in the space of real numbers, and three solutions in the space of complex
numbers.

Now consider the homogeneous Volterra integral equation

t
x(t) = J‘ K{t, s5) x(s) ds (1.15)
[1]
with kernel
sel,’r‘—l ) if 0 é s _E le' —ln-“
k.9 = {r, it s

The kernel K (¢, s) is continuous on the square 0 < ¢, s < 1 (verify!). Equation (1.15) therefore
has no nontrivial summable solutions (see Exercise 1.4). However. the equation has a
nonsummable solution™

0. if r=0.
"("‘{1/:, i 0<rist.

This example is due to Urysohn.

1.4. Spectral radius of a linear operator. If A is a linear operator, it is a
contraction if and only if its norm is smaller than 1. This raises the
problem of constructing equivalent norms with respect to which a given
linear operator 4 has as small a norm as possible.

It is proved in the theory of linear operators (see, e.g.. Kantorovich
and Akilov [1], p. 153) that the limit

po = lim 1/]4"| . (1.16)

n—+wx
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exists and is finite. The number p,, is called the spectral radius of the
bounded linear operator A. Clearly.

po = ||A]}.
The spectral radius p, is characterized by the fact that the inequality
IM > Po

implies that the operator (4 — AI)~ ! exists and is bounded. In particular,
if A is a compact linear operator, then p, = | 4, |, where 4, is an eigen-
value of A with maximum absolute value. Here one must consider both
real and complex eigenvalues of the operator 4; we recall that a number
4 = 0 + it is an eigenvalue of an operator A defined in a real Banach
space E if there exist x, y € E such that

Ax = ox — 1y, Ay=wx+oy (x| + |y] > 0.

Exercise 1.5. Show that the spectral radius of a linear operator is invariant with respect
to equivalent norms.
Exercise 1.6. Let

Ax(t) =J. K(t, s) x(s) ds

be a Voliterra integral operator with continuous kerne! K(t.s) (2 £ t,s < b). Show that,
as an operator on C. 4 has spectral radius zero.
Him. First prove the inequality

s SO

*

where K = max |K(.s)].
aSrsSh

Exercise 1.7. Let B(n = 1,2,...) be a given monotone decreasing numerical sequence
converging to zero. Construct a linear operator 4 such that J 4" = B.(n=1,2,...)

We shall now construct an equivalent norm in the space E such that
the norm of the linear operator 4 is arbitrarily close to its spectral radius.
Let ¢ > 0 be given, and determine n such that

W”§Po+8-

‘Now set

Ixlle = (0o + & x| + (0o + e Ax| + ...+ A" x| (1.17)
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Clearly,

(po + " x| = x| =
Slloo+ o™ +po + o A + ...+ 4] x|,

i.e., the norms | - || and || - ||, are equivalent. A simple calculation shows
that
[4lls = sup |lAx|, = po+e.
lxlle =1

Since po < |4}, in any norm, we have

o< A, S po+e.l

It follows in particular that for any ¢ > 0 one can construct an equiva-
lent norm in C such that the norm of the linear Volterra integral operator
(whose spectral radius is zero; see Exercise 1.6) is smaller than e.

The norm of a selfadjoint linear operator A defined on a Hilbert
space is equal to its spectral radius. In the general case, there are linear
operators for which there is no equivalent norm such that |4, = p,.
An example is the nonzero Volterra integral operator.

Exercise 1.8. Let A be a compact linear operator on a space E. Assume that the invariant
subspace of any eigenvalue of A whose absolute value is equal to the spectral radius consists
solely of eigenvectors. Construct an equivalent norm in E for which 4], = p,.

Exercise 1.9. Let A be a compact linear operator defined on a space E. Assume that at
least one eigenvalue 4, equal in absolute value to the spectral radius p,, has not only
eigenvectors but also generalized eigenvectors.* Show that the inequality |A[, > p,
holds for any equivalent norm in E.

1.5. Operators which commute with contraction operators. The following
simple observation is often useful: Let B be an operator which maps a
closed set 3 in a Barach space E into itself, and 4 an operator which
satisfies the conditions of the contracting mapping principle on %t;
if B commutes with A (AB = BA), then the fixed point of A4 is also a
fixed point of B.

Indeed, if Ax* = x*, then

ABx* = BAx* = Bx*,
that is, Bx* is a fixed point of 4, and therefore Bx* = x*.

* Yo is a generalized eigenvector of a linear operator A, corresponding to the eigenvalue
Ao, if Ago # Aogo, bt (A — Ao1)g, = O for some n > 1.



