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Preface

The propagator approach to a relativistic quantum theory pioneered
in 1949 by Feynman has provided a practical, as well as intuitively
appealing, formulation of quantum electrodynamics and a fertile
approach to a broad class of problems in the theory of elementary
particles. The entire renormalization program, basic to the present
confidence of theorists in the predictions of quantum electrodynamics,
is in fact dependent on a Feynman graph analysis, as is also con-
siderable progress in the proofs of analytic properties required to write
dispersion relations. Indeed, one may go so far as to adopt the
extreme view that the set of all Feynman graphs ¢s the theory.

We do not advocate this view in this book nor in its companion
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Preface

volume, “Relativistic Quantum Iields,”” nor indeed do we advocate
any single view to the exclusion of others. The unsatisfactory status
of present-day elementary particle theory does not allow one such a
luxury. In particular, we do not wish to minimize the importance of
the progress achieved in formal quantum field theory nor the con-
siderable understanding of low-energy meson-nucleon processes given
by dispersion theory. However, we give first emphasis to the develop-
ment of the Feynman rules, proceeding directly from a particle wave
cquation for the Dirac electron, integrated with hole-theory boundary
conditions.

Three main convictions guiding us in this approach were the
primary motivation for undertaking this book (later to become books):

1. The Feynman graphs and rules of calculation sumarize
quantum field theory in a form in close contact with the experimental
numbers one wants to understand. Although the statement of the
theory in terms of graphs may imply perturbation theory, use of
graphical methods in the many-body problem shows that this formal-
ism is flexible enough to deal with phenomena of nonperturbative
character (for example, superconductivity and the hard-sphere Bose
gas).

2. Some modification of the Feynman rules of calculation may
well outlive the elaborate mathematical structure of local canonical
quantum field theory, based as it is on such idealizations as fields
defined at points in space-time. Therefore, let us develop these rules
first, independently of the ficld theory formalism which in time may
come to be viewed more as a superstructure than as a foundation.

3. Such a development, more direct and less formal—if less com-
pelling—than a deductive field theoretic approach, should bring
quantitative calculation, analysis, and understanding of Feynman
graphs into the bag of tricks of & much larger community of physicists
than the specialized narrow one of second quantized theorists. In
particular, we have in mind our experimental colleagues and students
interested in particle physics. We believe this would be a healthy
development.

Our original idea of one book has grown in time to two volumes.
In the first book, “Relativistic Quantum Mechanics,” we develop a
propagator theory of Dirac particles, photons, and Klein-Gordon
mesons and perform a series of caleulations designed to illustrate
various useful techniques and concepts in electromagnetie, weak, and
strong interactions. These include defining and implementing the
renormalization program and evaluating effects of radiative corree-
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tions, such as the Laib shift, in low-order calculations. The necessary
background for this book is provided by a course in nonrelativistic
quantum mechanies at the general level of Schiff’s text “Quantum
Mechanics.”

In the second book, ‘“‘Relativistic Quantum Fields,” we devclop
canonical field theory, and after constructing closed expressions for
propagators and for scattering amplitudes with the LSZ reduetion
technique, return to the Feynman graph expansion.  The perturbation
expansion of the scattering amplitude constructed by canonical ficld
theory is shown to be identical with the Feynman rules in the first
book. With further graph analysis we study analyticity propertics of
TFeynman amplitudes to arbitrary orders in the coupling paramecter
and illustrate dispersion relation methods. Finally, we prove the
finiteness of renormalized quantum electrodynaniics to cach order of
the interaction.

Without dwelling further on what we do, we may list the major
topics we omit from discussion in these books. The devclopment of
action principles and a formulation of quantum field theory from a
variational approach, spearheaded largely by Schwinger, are on the
whole ignored. We refer to action variations only in search of sym-
metries. There is no detailed discussion of the powerful developments
in axiomatic field theory on the one hand and the purely S-matrix
approach, divorced from ficld theory, on the other. Aside from a
discussion of the Lamb shift and the hydrogen atom spectrum in the
first book, the bound-state problem is ignored. Dynamical applica-
tions of the dispersion relations are explored only minimally. A
formulation of a quantum field theory for massive vector mesons is not
given—nor is a formulation of any quantum field theory with deriva-
tive couplings. Finally, we have not prepared a bibliography of all
the significant original papers underlying many of the developments
recorded in these books. Among the following recent excellent books
or monographs is to be found the remedy for one or more of these
deficiencies:

Schweber, S.: “An Introduction to Relativistic Quantum Field Theory,” New
York, Harper & Row, Publishers, Inc., 1961.

Jauch, J. M., and F. Rohrlich: “The Theory of Photons and Electrons,” Cam-
bridge, Mass., Addison-Wesley Publishing Company, Inc., 1955.

Bogoliubov, N. N, and D. V, Shirkov: “Introduction to the Theory of Quantized
Fields,” New York, Interscience Publishers, Inc., 1959.

Akhiezer, A., and V. B. Bereztetski: “‘Quantum Electrodynamics,” 2d ed., New
York, John Wiley & Sons, Inc., 1963.

Umezawa, H.: “Quantum Field Theory,” Amsterdam, North Holland Publishing
Company, 1956.
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1.1 Formulation of a Relativistic Quantum Theory

Since the principles of special relativity are generally accepted at this
time, a correct quantum theory should satisfy the requirement of
relativity : laws of motion valid in one inertial system must be true in
all inertial systems. Stated mathematically, relativistic quantum
theory must be formulated in a Lorentz covariant form.

In making the transition from nonrelativistic to relativistic
quantum mechanics, we shall endeavor to retain the principles under-
lying the nonrelativistic theory. We review them briefly :!

1. For a given physical system there exists a state function & that
summarizes all that we can know about the system. In our initial
development of the relativistic one-particle theory, we usually deal
directly with a coordinate realization of the state funection, the wave
function ¥(g: - -« ,s¢ - - - 1. ¢¥{gs,t) is a complex function of all
the classical degrees of freedom, ¢, * - - ¢n, of the time ¢ and of any
additional degrees of freedom, such as spin s;, which are intrinsically
quantum-mechanical. The wave function has no direct physical

interpretation; however, |[¢(g1 * + - gn,81 * * - 8,,0)|2 > 0 is inter-
preted as the probability of the system having values (g, - - - 8.)
at time {. Evidently this probability interpretation requires that
the sum of positive contributions |¢|? for all values of g, - - + s, at

time ¢ be finite for all physically acceptable wave functions ¢.

2. Every physical observable is represented by a linear hermitian
operator. In particular, for the canonical momentum p; the operator
correspondence in a coordinate realization is

Lt
i zaql

3. A physical system is in an eigenstate of the operator Q if
0P, = w.d, (1.1)

where &, is the nth eigenstate corresponding to the eigenvalue w,.

For a hermitian operator, w, is real. In a coordinate realization the
equation corresponding to (1.1) is

Q(Qrs’t)‘pﬂ(%s;t) = wa¥n(9,8,1)

1See, for example, W. Pauli, “Handbuch der Physik,”” 2d ed., vol. 24, p. 1,
J. Springer, Berlin, 1933. L. I. Schiff, “Quantum Mechanies,” 2d ed., McGraw-
Hill Book Company, Inc., New York, 1955. P. A. M. Dirac, “The Principles of
Quantum Mechanics,” 4th ed., Oxford University Press, London, 1958.
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The Dirac equation 3

4. The expansion postulate states that an arbitrary wave fune-
tion, or state function, for a physical system can be cxpanded in a
complete orthonormal set of eigenfunctions ¥, of a complete set of
commuting operators (2,). We write, then,

‘)D = 2 an‘l’n

n

where the statement of orthonormality is
D G W s D@ s ) = b

la.|? records the probability that the system is in the nth eigenstate.

5. The result of a measurement of a physical observable is any
one of its eigenvalues. In particular, for a physical system described
by the wave function ¢ = Za.., with @, = w.l,, measurement of
a physical observable © results in the eigenvalue @, with a probability
|aa|2. The average of many measurements of the observable @ on
identically prepared systems is given by

.(Q)vaZflﬁ*(fh T s )W s 0yt - )
= z [@n%n

6. The time development of a physical system is expressed by the
Schridinger equation
A
i F i Hy (1.2)
where the hamiltonian H is a linear hermitian operator. It has no
explicit time dependence for a closed physical system, that is,
dH /8t = 0, in which ease its eigenvalues are the possible stationary
states of the system. A superposition principle follows from the
linearity of H and a statement of conservation of probability from the
hermitian property of H:

5,2 [orda -9 = ;2 [ @ax - - N~ yrum)

=0 (1.3)

We strive to maintain these familiar six principles as under-
pinnings of a relativistic quantum theory.
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1.2 Early Attempts

The simplest physical system is that of an isolated free particle, for
which the nonrelativistic hamiltonian is

o
H = om (1.4)
The transition to quantum mechanics is achieved with the transeription
Hoihd (1.5)

ot )

h
p—7V

which ‘eads to the nonrelativistic Schrédinger equation

L Oplgl) _ —hewe
th = ———¥(at) (1.6)

Equations (1.4) and (1.6) are noncovariant and therefore unsatis-
factory. The left- and right-hand sides transform differently under
Lorentz transformations. According to the theory of special rela-
tivity, the total energy K and momenta {(p,,p,,p.) transform as com-
ponents of a contravariant four-vector

E
pt = (pp',p%p%) = (;' pz,pn,p:)

of invariant length

3 2

2 Dupt = pup* = % —p-p=mi .7
pa=0

m is the rest mass of the particle and ¢ the veloeity of light in vacuo.
The covariant notation used throughout this book is discussed in more
detail in Appendix A. Here we only note that the operator tran-
seription (1.5) is Lorentz covariant, since it is a correspondence
between two contravariant four-vectors! p* — ih 8/dx,.

Following this it is natural to take as the hamiltonian of a relativ-
istic free particle

H = v/p*?* + mi? (1.8)

'We define z# = (ct,x) and V¥ = 3/9z,.
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and to write for a relativistic quantum analogue of (1.6)

3 0¥ _

ho \ — R%VE 4 mict b (1.9)

Immediately we are faced with the problem of interpreting the square-
root operator on the right in Eq. (1.9). If we expand it, we obtain an
equation containing all powers of the derivative operator and thereby
a nonlocal theory. Such theories are very difficult to handle and
present an unattractive version of the Schrodinger equation in which
the space and time coordinates appear in unsymmetrical form.

In the interest of mathematical simplicity (though perhaps with
a lack of complete physical cogency) we remove the square-root
operator in (1.9), writing

H? = p%? + m2 (1.10)

Equivalently, iterating (1.9) and using the fact that! if [4,B] = 0,
Ay = By implies A% = B%), we have

2
—%2 gt—i ¥ = (—hVic? + mict)y

This is recognized as the classical wave equation

o (3)]s -

8 9
where O= 3%, o (1.11)
Before looking further into (1.11), we note first that in squaring
the energy relation we have introduced an extraneous negative-energy
root
H= — \/p’Cz + mzct

In order to gain a simple equation, we have sacrificed positive definite
energy and introduced the difficulty of ‘extra” negative-energy
solutions. This difficulty is eventually surmounted (as we shall study
in Chap. 5), and the negative-energy solutions prove capable of
physical interpretation. In particular, they are associated with
antiparticles. and the existence of antiparticles in nature lends strong
experimental support for this procedure. So let us for a moment con-
sider Eq. (1.10) and the inferred wave equation (1.11). Our first
task is to construct a conserved current, since (1.11) is a second-order

! Throughout, we use the notation [A4,B] = AB — BA for commutator
brackets and {4,B} = AB + BA for anticommutator brackets.
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wave equation and is altered from the Schréodinger form (1.2) upon
which the probability interpretation in the nonrelativistic theory
is based. This we do in analogy with the Schrodinger equation,

taking ¥* times (1.11), ¢ times the complex conjugate equation, and
subtracting:

¢*[D+($>2]¢—¢{D+<W>]¢*=0

V“(\I/*Vﬂl‘l/ - wvu'[’*) =0

or
a * l'b a\b iv ﬁ -— & —
ot [ Imet (‘l’ — Vo )] + div Sim (V) — (Y™ =0 (1.12)

0
We would like to interpret (¢h/2mc?) (t{/* —y¢- gt) as a

probability density p. However, this is 1mpossxble, since it is not a
positive definite expression. For this reason we follow the path of
history! and temporarily discard Eq. (1.11) in the hope of finding an
equation of first order in the time derivative which admits a straight-
forward probability interpretation as in the Schréodinger case. We
shall return to (1.11), however. Although we shall find a first-order
equation, it still proves impossible to retain a positive definite proba-
bility density for a single particle while at the same time providing a
physical interpretation of the negative-energy root of (1.10)., There-
fore Eq. (1.11), also referred to frequently as the Klein-Gordon equa-
tion, remains an equally strong candidate for a relativistic quantum
mechanies as the one which we now discuss.

1.3 The Dirac Equation

We follow the historic path taken in 1928 by Dirac? in seeking a
relativistically covariant equation of the form (1.2) with positive
definite probability density. Since such an equation is linear in the
time derivative, it is natural to attempt to form a hamiltonian linear
in the space derivatives as well. Such an equation might assume a
form

oy e N iy \ﬁ .
h‘(Tt—T(ala—.tl-*-azg:;:E_}- + Bmety = HY (1.13)
1E. Schrédinger, Ann. Physik, 81, 109 (1926); W. Gordon, Z. Physik, 40, 117
(1926); O. Klein, Z. Physik, 41, 407 (1927).
*P. A. M. Dirac, Proc. Roy. Soc. (London), A117, 610 (1928); :bid., A118,
351 (1928); “The Principles of Quantum Mechanics,” op. ¢it.



