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Preface

The theory of nonlinear boundary value problems is an extremely impor-
tant and interesting area of research in differential equations. Due to the entirely
different nature of the underlying physical processes, its study is substantially
more difficult than that of initial value problems and consequently belongs to a
third course in differential equations. Although this sophisticated branch of
research has, in recent years, developed significantly, the available books are
either more elementary in nature, for example the book by Baily, Shampine, and
Waltman, or directed to a particular method of importance, such as that by
Bellman and Kalaba. Hence it is felt that a book on an advanced level that
exposes the reader to this fascinating field of differential equations and provides
a ready access to an up-to-date state of this art is of immense value. With this as
motivation, we present in our book a variety of techniques that are employed in
the theory of nonlinear boundary value problems. For example, we discuss the
following:

(i) methods that involve differential inequalities;
(ii) shooting and angular function techniques;
(iii) functional analytic approaches;
(iv) topological methods.
We have also included a chapter on nonlinear boundary value problems for
functional differential equations and a chapter covering special topics of interest.
The main features of the book are
(i) a coverage of a portion of the material from the contribution of
Russian mathematics of which the English speaking world is not well aware;
(ii) the use of several Lyapunov-like functions and differential in-
equalities in a fruitful way;
(iii) the inclusion of many examples and problems to help the reader
develop an expertise in the field.
This book is an outgrowth of a seminar course given by the authors. We

ix



PREFACE

have assumed the reader is familiar with the fundamental theory of ordinary
differential equations, including the theory of differential inequalities, as well as
the basic theory of real and functional analysis. It is designed to serve as a text-
book for an advanced course and as a research monograph. It is therefore useful
to the specialist and the nonspecialist alike. The reader who is familiar with the
contents of the book, it is hoped, is fully equipped to contribute to the area.
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Chapter 1
METHODS INVOLVING DIFFERENTIAL INEQUALITIES

1.0 INTRODUCTION

A variety of techniques are employed in the theory of
nonlinear boundary value problems. This chapter is primarily
concerned with the methods involving differentiel inequalities.
The basic idea is to modify the given boundary value problem
suitably, and then to use the theory of differential in-
equalities and the existence theorems in the small to establish
the desired existence results in the large.

After presenting needed existence theorems in the small,
we first concentrate on scalar second-order differential
equations and associated boundary value problems. We then
introduce upper and lower solutions, discuss the modification
technique, and utilize Nagumo's condition to obtain & priori
bounds on solutions and their derivatives. Once we have these
bounds at our disposal, to prove existence theorems on finite
or infinite intervals is relatively simple and straightforward.
Boundary value problems subjected to nonlinear boundary con-
ditions as well are treated in this framework. We then
develop Lyepunov-like theory for boundary value problems em-
ploying several Iyaspunov-like functions and the theory of
differential inequalities in a fruitful way. We also treat

in detail Perron's method of proving existence in the large



1. METHODS INVOLVING DIFFERENTIAL INEQUALITIES

by utilizing the properties of sub- and superfunctions and
the existence results in the small. This technique works well
for scaler equations.

We next extend the results considered for scalar equations
to a finite system of second-order differential equations. Here
there are two directions to follow, that is, either try to
obtain the required bounds componentwise or in terms of a con-
venient norm. We offer results from both points of view in-
dicating their relative merits and using Lyaspunov-like theory,

whenever possible, to derive general results.
1.1 EXISTENCE IN THE SMALL

Tet Rn denote the real n-dimensional, Euclidean space
and for x ¢ Rn, let ”x” denote any convenient norm of x.
Iet J 7be the interval [a,b]. We shall mean by C(n)[A,B]
the class of n-times continuously differentiable functions
from a set A into a set B.

We will be concerned, in this section, with the existence
of solutions of the second-order differential equations of the

form
(1.1.1) x"=f(t,x,x'),
satisfying the boundary conditions

(1.1.2) x(tl)=xl, x(t2)=x2, t,t, € J,

where f ¢ C[J><Rn><Rn,Rn]. For the purposes of this chapter,

we also need an existence result under more general boundary

conditions. This we do consider for the scalar case, leaving

a thorough discussion of the general theory to a later chapter.
First of all, we observe that the only solution of

(1.1.3) x"=0,

subject to the boundary conditions



1.1. EXISTENCE IN THE SMALL
(1.1.4) x(t)) =0,  x(t,) = 0,

is the trivial solution. This implies, from the theory of
linear differential equations, that there exists a unique

solution of

(1.1.5) x" = h(t),

satisfying (1.1.4) for each h ¢ C[3,R%]. Moreover, since the
problem (1.1.3), (1.1.4) possesses the two linearly independent
solutions wu(t)= (t-tl), v(t) = (t2"t)’ the method of vari-

ation of parameters readily gives the integral equation

- rt
1
(1.1.6) x(t) = -t . j;l (tz-t)(s-tl)h(s) ds

~t
+ jt ? (6-1,)(t,-5)n(s) as

for the solution x(t) of (1.1.5) subject to (1.1.4).
Relation (1.1.6) can be written in the familiar form

t
(1.1.7) x(t) = f 2 &(t,s)h(s) ds,
tl~
where
(b, =t)(s=t)/(t -t,),  t, <s <t <ty

G(t,s) =

A

k(tz-s)(t-tl)/(tl-tz), t, <t <s <ty

This function G(t,s) is usually referred to as the Green's
function for the boundary value problem in question. Hence
the solution of (1.1.5) verifying conditions (1.1.2) takes the

form
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t

(1.1.8) x(t) =f 2 a(t,8)n(s) ds + w(t),
t
1

where w'"(t) = 0 and w(tl) = X, w(tg) = x,. It therefore

follows that if x(t) 4s a solution of (1.1.1), (1.1.2), then

(1.2.9) =x(t) =ft2 G(t,s)f(s,x(s), x'(s)) ds + w(t).
JGl

Conversely, if x(t) is a solution of (1.1.9), we can verify
by differentiation of (1.1.6) that x(t) satisfies (1.1.1),
(1.1.2).

Let us next recall some properties of the function
G(t,s) for later use. For a fixed t, the maximum of
lG(t,s)| is atteined at s=t and [G(t,t)| has its meximum
value at t = (t,+t,)/2, that is,

(1.1.10) la(t,8)] < (ty-t /4.

Furthermore,

t
[ B let,0) as = (5=t -1,)2
tl

and consequently

t
(1.1.11) Jt 2 Ja(t,s)| as < (t2-t1)2/8.
1

Moreover,

t
ft 2 |Gt(t,s)| ds = ((t-tl)2+(t2-t)2)/2(t2-tl),
1

the maximum of which is attained at t=tl and t=t2. Hence,

we obtain



1.1. EXISTENCE IN THE SMALL

[\t
(1.1.12) 2 g, (t,8)] ds < (b, -%,)/2.
t -Y2 1
t
1
We are now ready to prove an existence and uniqueness

result by using the contraction mapping theorem.

THEOREM 1.1.1. Iet f e C[JxB®xR%,R"] and for

(6:%,57,)s (5,%,7,) € J xR* x®",

1%
where K, L > 0 are constants such that
2
(1.1.14) K ((t,-ty) /8)+ L ((tz-tl)/Z) <1.
Then the boundary value problem (1.1.1), (1.1.2) has a unique

solution.

Proof: Let B be the Banach space of functions
[6D) n .
uelcC [tl,tz], R with the norm

bl = max  [rla(e)l + the®)1] -

tlststg

Define the operator T: B—B by

t
Tu(t) =]; 2 G(t,s)f(s,u(s),u'(s)) ds + w(t).
1

We then have, by (1.1.11) and (1.1.13),
I, (6) - Tuy (8)1] < ——5— [K||112(t)-ul(t)”+L||ué(t) -u_-'L(t)“]
(t
clent) nu a ly

Also, because of (1.1.12),
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(t,-t,)
Iag(e) - Ty (63l <~ [Khuy(e) = () 1+ Thag (8) - uj (6)1]

(t2 -t )
1
S 2' !hlz "ul”B .

It then follows that

(bp-t)°  (ty-%y)
||m2-ml||B5[K 281 122 ”“2‘“1“3]

This, in view of assumption (1.1.14), shows that T is a
contraction mapping and thus has a unique fixed point which is
the solution of the problem (1.1.1), (1.1.2). The proof is

complete.

An interesting problem is to find the largest possible
interval in which the preceding theorem is valid. In the case
when f ¢ C[JXRXR,R], one can offer such a best possible
result. We have intentionally given such a result in the

following exercise with generous hints.

EXERCISE 1.1.1. Assume that f ¢ C[JXRXR,R] and
satisfies (1.1.13). Iet u(t) be any solution of

(1.1.15) u'+Iu' +Ku=0

which vanishes at t= tl and let o (L,K) be the first unique

number such that u'(t)=0 for t=tl+af(L,K). Show that the

boundary value problem (1.1.1), (1.1.2) has a unique solution

if t, -tl < 20/(1,K) and that this result is best possible.
Hints: Step 1. First show that there is a unique solution

to the boundary value problem x"=7£(t,x,x'), x(tl)=xl,

x'(t3)= ) if (t3 -tl) < o(L,X). This can be shown by apply-

ing the contraction mapping theorem relative to the Banach

space E=c(1) [[tl,t3],R} with the norm

6



1.1. EXISTENCE IN THE SMALL

boly = mex| w6 om0 |,
'tlststB t15t5t3

where u, (t) >0 1is a solution of

" Iu' +Ku _
u + = =

0

for o sufficiently close to 1.
Step 2. Show that the existence of unique s'olutions of
(1.1.1), (1.1.2) and of (1.1.1) with either x(t,)=x,
x! (t:3)~:x3 or x'(tl)-_- %35 x(t2)=x2 on any interval of
length less than d implies the existence of a unique solution
of (1.1.1), (1.1.2) on any interval of length less than 24.
Step 3. To prove that the result is the best possible
show that u"+L|u'|+Ku=0 has a nontrivial solution verify-
ing u(tl) =u(t,) =0, where ty-ty= 20(L,K). Since wu(t) =0
also satisfies the problem, argue that the result is best

possible. Observe that o(L,K) can be explicitly computed.

EXERCISE 1.1.2. Show that it is sufficient to define f
in Theorem 1.1.1 for t e [tl,tz], [l <N, et || < ’-LN/(te-tl),

where N satisfies either

> 2

bt bt b -t
miﬁziLSN[l'(K(esﬂ *L(229>]’
if m= mx tct, l£¢t,0,0) [, or M (t2—t1)2/851\1,

if M=max [If(t,x,x')| for t e (1,8, Ixll < w, Il [l <
hN/(te-tl).

Hint: Apply the contraction mapping theorem on the ball
“u”o <N vhere
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al [ (o)l ——n—-(te'tl) a (t)ll}
ull, = max s max ' .
0 e tlststz tlststz

To obtain merely an existence result we employ Schauder's

fixed point theorem as is usual.

THEOREM 1.1.2. Iet M >0, N> 0 be given numbers and
let, for t ¢ J,

[l | < M, Iy < AN, ”f(tJXJY)” <4q,

where f ¢ C[Jlan xR,R™1. Suppose that

& = min[(8M/q)2, 2N/q]. Then any problem (1.1.1), (1.1.2)
such that [t,t,] €3, ty-ty <8 I ll<t lx,ll <M ana
”xl--:steﬂ/(t2 - tl) < N, has a solution. Furthermore, given
any € > 0, there is & solution x(t) such that

le(t) -w(t)ll < &, It (&) -we(t)l <e on [t,t,], provided
t2 -tl is sufficiently small.

Proof: Consider the Banach space B=C(l) [[tl,tz],Rn]

with the norm ”x”B = max, . lbe(t) | + max, et () 1.

1St5t
Notice that the set

1585

By = [x ¢ 3B: [l ]| <aM, |kx'] < 2]

is a closed, convex subset of B. Define the mapping T: B-B
by

t
Tx(t) =J; 2 G(t,s) f(s,x(s),x'(s)) ds + w(t).
1l

Using now estimates (1.1.11), (1.1.12), we obtain

Iee)ll < ((b,-1,)%/8) @ + 1



