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Preface

Soft computing approaches in decision making have become increasingly pop-
ular in many disciplines. This is evident from the vast number of technical
papers appearing in journals and conference proceedings in all areas of engi-
neering. manufacturing, sciences. medicine. and business. Soft computing is a
rapidly evolving field that combines knowledge. techniques. and methodologies
from various sources. using techniques from neural networks, fuzzy set theory,
and approximate reasoning, and using optimization methods such as genetic
algorithms. The integration of these and other methodologies forms the core of
soft computing.

The motivation to adopt soft computing. as opposed to hard computing. is
based strictly on the tolerance for imprecision and the ability to make decisions
under uncertainty. Soft computing is goal driven - the methods used in finding
a path to a solution do not matter as much as the fact that one is moving
toward the goal in a reasonable amount of time at a reasonable cost. While
soft computing has applications in a wide variety of fields. we will restrict our
discussion primarily to the use of soft computing methods and techniques in
control theory.

Over the past several years. courses in fuzzy logic. artificial neural networks,
and genetic algorithms have been offered at New Mexico State University when
a group of students wanted to use such approaches in their graduate research.
These courses were all aimed at meeting the special needs of students in the
context of their research objectives. We felt the need to introduce a formal
curriculum so students from all disciplines could benefit. and with the estab-
lishment of The Rio Grande Iunstitute for Soft Computing at New Mexico State
University, we introduced a course entitled "Fundamentals of Soft Computing
I” during the spring 2000 semester. This book is an outgrowth of the material
developed for that course.

We have a two-fold objective in this text. Our first objective is to empha-
size that both fuzzy and neural control technologies are firmly based upon the
principles of classical control theory. All of these technologies involve knowledge
of the basic characteristics of system response from the viewpoint of stability,
and knowledge of the parameters that affect system stability. For example. the
concept of state variables is fundamental to the understanding of whether or
not a system is controllable and/or observable. and of how key system vari-
ables can be monitored and controlled to obtain desired system performance.

vii
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To help meet the first objective. we provide the reader a broad flavor of what
classical control theory involves. and we present in some depth the mechanics of
implementing classical control techniques. It is not our intent to cover classical
methods in great detail as much as to provide the reader with a firm understand-
ing of the principles that govern system behavior and control. As an outcome of
this presentation. the type of information needed to implement classical control
techniques and some of the limitations of classical control techniques should
become obvious to the reader.

Our second objective is to present sufficient background in both fuzzy and
neural control so that further studies can be pursued in advanced soft comput-
ing methodologies. The emphasis in this presentation is to demonstrate the
ease with which system control can be achieved in the absence of an analytical
mathematical model. The benefits of a model-free methodology in comparison
with a model-based methodology for control are made clear. Again. it is our in-
tent to bring to the reader the fundamental mechanics of both fuzzy and neural
control technologies and to demonstrate clearly how such methodologies can be
implemented for nonlinear system control.

This text. A First Course in Fuzzy and Neural Control. is intended to address
all the material needed to motivate students towards further studies in soft
computing. Our intent is not to overwhelm students with unnecessary material.
either from a mathematical or engineering perspective. but to provide balance
between the mathematics and engineering aspects of fuzzy and neural network-
based approaches. In fact. we strongly recommend that students acquire the
mathematical foundations and knowledge of standard control systems before
taking a course in soft computing methods.

Chapter 1 provides the fundamental ideas of control theory through simple
examples. Our goal is to show the consequences of systems that either do or
do not have feedback. and to provide insights into controller design concepts.
From these examples it should become clear that systems can be controlled if
they exhibit the two properties of controllability and observability.

Chapter 2 provides a background of classical control methodologies. in-
cluding state-variable approaches. that form the basis for control systems de-
sign.  We discuss state-variable and output feedback as the primary moti-
vation for designing controllers via pole-placement for systems that are in-
herently unstable. We extend these classical control concepts to the design
of conventional Proportional-Integral (PI). Proportional-Derivative (PD). and
Proportional-Integral- Derivative (PID) controllers. Chapter 2 includes a dis-
cussion of stability and classical methods of determining stability of nonlinear
systems.

Chapter 3 introduces mathematical notions used in linguistic rule-based con-
trol. In this context, several basic examples are discussed that lay the mathe-
matical foundations of fuzzy set theory. We introduce linguistic rules - methods
for inferencing based on the mathematical theory of fuzzy sets. This chapter
emphasizes the logical aspects of reasoning needed for intelligent control and
decision support systems.

In Chapter 4, we present an introduction to fuzzy control, describing the
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general methodology of fuzzy control and some of the main approaches. We
discuss the design of fuzzy controllers as well as issues of stability in fuzzy
control. We give examples illustrating the solution of control problems using
fuzzy logic.

Chapter 5 discusses the fundamentals of artificial neural networks that are
used in control systems. In this chapter. we briefly discuss the motivation for
neural networks and the potential impact on control system performance. In
this context. several basic examples are discussed that lay the mathematical
foundations of artificial neural networks. Basic neural network architectures.
including single- and multi-layer perceptrons. are discussed. Again. while our
objective is to introduce some basic techniques in soft computing. we focus
more on the rationale for the use of neural networks rather than providing an
exhaustive survey and list of architectures.

In Chapter 6. we lay down the essentials of neural control and demonstrate
how to use neural networks in control applications. Through examples. we pro-
vide a step-by-step approach for neural network-based control systems design.

In Chapter 7. we discuss the hybridization of fuzzy logic-based approaches
with neural network-based approaches to achieve robust control. Several exam-
ples provide the basis for discussion. The main approach is adaptive neuro-fuzzy
inference systems (ANFIS).

Chapter 8 presents several examples of fuzzyv controllers. neural network con-
trollers. and hybrid fuzzy-neural network controllers in industrial applications.
We demonstrate the design procedure in a step-by-step manner. Chapters 1
through 8 can casily be covered in one semester. We recommend that a mini-
mum of two projects be assigned during the semester. one in fuzzy control and
one in neural or neuro-fuzzy control.

Throughout this book. the significance of simulation is emphasized. We
strongly urge the reader to become familiar with an appropriate computing en-
vironment for such simulations. In this book. we present MATLAB™ simulation
models in many examples to help in the design. simulation. and analysis of
control system performance. MATLAB can be utilized interactively to design
and test prototype controllers. The related program. Simulink®. provides a
convenient means for simulating the dynamic behavior of control systems.

We thank the students in the Spring 2000 class whose enthusiastic responses
encouraged us to complete this text. We give special thanks to Murali Sidda-
iah and Habib Gassoumi. former Ph.D. students of Ram Prasad. who kindly
permitted us to share with you results from their dissertations that occur as
examples in Chapters 6 and 8. We thank Chin-Teng Lin and C. S. George Lee
who gave us permission to use a system identification example from their book
Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems.

Much of the material discussed in this text was prepared while Ram Prasad
spent a year at the NASA/Jet Propulsion Laboratory between August 2001
and August 2002, as a NASA Faculty Fellow. For this. he is extremely thank-
ful to Anil Thakoor of the Bio-Inspired Technologies and Systems Group. for
his constant support, encouragement, and the freedom given to explore both
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application-oriented technologies and revolutionary new technology develop-
ment.

We thank our editor, Bob Stern. project coordinator. Jamie B. Sigal. and
project editor Marsha Hecht for their assistance and encouragement. And we
give a very personal thank you to Ai Khuyen Prasad for her utmost patience
and good will.

Hung T. Nguyen
Nadipuram R. Prasad
Carol L. Walker
Elbert A. Walker

Las Cruces, New Mexico

July 2002
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Chapter 1

A PRELUDE TO
CONTROL THEORY

In this opening chapter, we present fundamental ideas of control theory through
simple examples. These fundamental ideas apply no matter what mathematical
or engineering techniques are employed to solve the control problem. The exam-
ples clearly identify the concepts underlying open-loop and closed-loop control
systems. The need for feedback is recognized as an important component in cou-
trolling or regulating system performance. In the next chapter, we will present
examples of classical modern control theory systems that rely on mathematical
models, and in the remainder of this book. we explore possible alternatives to
a rigid mathematical model approach. These alternative approaches -— fuzzy,
neural, and combinations of these — provide alternative designs for autonomous
intelligent control systems.

1.1 An ancient control system

Although modern control theory relies on mathematical models for its imple-
mentation, control systems were invented long before mathematical tools were
available for developing such models. An amazing control system invented about
2000 years ago by Hero of Alexandria. a device for the opening and closing of
temple doors — is still viewed as a control system marvel. Figure 1.1 illustrates
the basic idea of his vision. The device was actuated whenever the ruler and
his entourage arrived to ascend the temple steps. The actuation consisted of
lighting a fire upon a sealed altar enclosing a column of air. As the air temper-
ature in the sealed altar increased, the expanding hot air created airflow from
the altar into a sealed vessel directly below. The increase in air pressure created
inside the vessel pushed out the water contained in this vessel. This water was
collected in a bucket. As the bucket became heavier. it descended and turned
the door spindles by means of ropes, causing the counterweights to rise. The left
spindle rotated in the clockwise direction and the right spindle in the counter-
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Figure 1.1. Hero’s automatic temple doors

clockwise direction, thus opening the temple doors. The bucket, being heavier
than the counterweight, would keep the temple doors open as long as the fire
upon the altar was kept burning. Dousing the fire with cold water caused the
temple doors to close." As the air in the altar cooled, the contracting cool air
in the altar created a suction to extract hot air from the sealed vessel. The
resulting pressure drop caused the water from the bucket to be siphoned back
into the sealed vessel. Thus, the bucket became lighter, and the counterweight

'Here, there is a question on how slow or how fast the temple doors closed after dousing
out the fire. This is an important consideration, and a knowledge of the exponential decay
in temperature of the air column inside the altar holds the answer. Naturally then, to give a
theatrical appearance, Hero could have had copper tubes that carried the air column in close
contact with the heating and cooling surface. This would make the temperature rise quickly
at the time of opening the doors and drop quickly when closing the doors.
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being heavier. moved down, thereby closing the door. This system was kept in
total secret. thus creating a mystic environment of superiority and power of the
Olympian Gods and contributing to the success of the Greek Empire.

1.2 Examples of control problems

One goal of classical science is to understand the hehavior of motion of physical
systems. In control theory, rather than just to understand such behavior. the
object is to force a system to behave the way we want. Control is. roughly
speaking. a means to force desired behaviors. The term control. as used here,
refers generally to an instrument (possibly a human operator) or a set of instru-
ments used to operate. regulate. or guide a machine or vehicle or some other
system. The device that executes the control function is called the controller,
and the system for which some property is to be controlled is called the plant.
By a control system we mean the plant and the controller. together with the

Distwrbances
Controlting | Tput Controlled Output
device system
Feedback

Figure 1.2. Control system

communication between them. The examples in this section include manual and
automatic control systems and combinations of these. Figure 1.2 illustrates the
basic components of a typical control system. The controlling device produces
the necessary input to the controlled system. The output of the controlled sys-
tem. in the presence of unknown disturbances acting on the plant. acts as a
feedback for the controlling device to generate the appropriate input.

1.2.1 Open-loop control systems

Consider a system that is driven by a human — a car or a bicycle for example.
If the human did not make observations of the environment. then it would be
impossible for the -system™ to be controlled or driven in a safe and secure
manner. Failure to observe the motion or movement of the system could have
catastrophic results. Stated alternatively. if there is no feedback regarding the
system’s behavior. then the performance of the system is governed by how well
the operator can maneuver the system without making any observations of the
behavior of the system. Control systems operating without feedback regarding
the system’s behavior are known as open-loop control systems. In other
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words, an open-loop control system is one where the control inputs are chosen
without regard to the actual system outputs. The performance of such systems
can only be guaranteed if the task remains the same for all time and can be
duplicated repeatedly by a specific set of inputs.

Example 1.1 (Traffic light) To control the flow of traffic on city streets. a
traffic engineer may preset a fixed time interval for a traffic light to turn green.
yellow, and red. In this example. the environment around the street intersection
is the plant. Traffic engineers are interested in controlling some specified plant

Controller Plant
Preset On/Off Traffic Street Fl
Timer Switch Lights | | Intersection Traffic Flow

Figure 1.3. Traffic light. open-loop control

output, here the traffic flow. The preset timer and on/off switch for the traffic
light comprise the controller. Since the traffic lights operate according to a
preset interval of time, without taking into account the plant output (the timing
is unaltered regardless of the traffic flow). this control system is an open-loop
control system. A pictorial representation of the control design. called a block
diagram, is shown in Figure 1.3.

Example 1.2 (Toaster) A toaster can be set for producing the desired dark-
ness of toasted bread. The “darkness” setting allows a timer to time out and
switch off the power to the heating coils. The toaster is the plant. and the

Preset On/Off

. Toast Toasted B
Timer Switch oaster oasted Bread

Figure 1.4. Standard toaster

timing mechanism is the controller. The toaster by itself is unable to determine
the darkness of the toasted bread in order to adjust automatically the length
of time that the coils are energized. Since the darkness of the toasted bread
does not have any influence on the length of time heat is applied. there is no
feedback in such a system. This system. illustrated in Figure 1.4, is therefore
an open-loop control system.

Example 1.3 (Automatic sprinkler system) An automatic home sprinkler
system is operated by presetting the times at which the sprinkler turns on and
off. The sprinkler system is the plant, and the automatic timer is the controller.
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Controller Plant
Pr"eset On/_ off Sprinkler Water
Timer Switch System

Figure 1.5. Automatic sprinkler system

There is no automatic feedback that allows the sprinkler system to modify the
timed sequence based on whether it is raining. or if the soil is dry or too wet.
The block diagram in Figure 1.5 illustrates an open-loop control system.

Example 1.4 (Conventional oven) With most conventional ovens, the cook-
ing time is prescribed by a human. Here. the oven is the plant and the controller
is the thermostat. By itself, the oven does not have any knowledge of the food

Controller Plant

On/Off

. O
Switch ven Cooked Food

Thermostat

Figure 1.6. Conventional oven

condition, so it does not shut itself off when the food is done. This is, there-
fore, an open-loop control system. Without human interaction the food would
most definitely become inedible. This is typical of the outcome of almost all
open-loop control problems.

From the examples discussed in this section. it should become clear that
some feedback is necessary in order for controllers to determine the amount of
correction, if any, needed to achieve a desired outcome. In the case of the toaster,
for example, if an observation was made regarding the degree of darkness of the
toasted bread. then the timer could be adjusted so that the desired darkness
could be obtained. Similar observations can be made regarding the performance
of the controller in the other examples discussed.

1.2.2 Closed-loop control systems

Closed-loop systems, or feedback control systems. are systems where the
behavior of the system is observed by some sensory device. and the observations
are fed back so that a comparison can be made about how well the system is
behaving in relation to some desired performance. Such comparisons of the
performance allow the system to be controlled or maneuvered to the desired
final state. The fundamental objective in closed-loop systems is to make the
actual response of a system equal to the desired response.
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Example 1.5 (Traffic light) To control the traffic flow in a more efficient

Plant

Controlling | Input Traffic | | Street Traffic Flow
Device Lights Intersection

Feedback

Figure 1.7. Traffic light feedback control

manner than in the example of the open-loop traffic light control described in
Example 1.1, we could design a controller that does take into account the traffic
flow (i.e., plant output). In this case, the new control system is referred to as
a closed-loop system since the control strategy uses feedback information. The
block diagram of this design is shown in Figure 1.7.

Example 1.6 (Flush tank) Suppose water flows into a flush tank through a
supply valve, and the goal is to keep the water in the tank at a given level.

Valve e
Float —
~atl}— Tank
Water __|
supply

Figure 1.8. (a) Flush tank with float

Controller Blant
Float and | Fluid Flow Flush
Valve Tank

Water Level

Figure 1.8. (b) Control system diagram for flush tank with float

One control system solving this problem uses a float that opens and closes the
supply valve. As the water in the tank rises, the float rises and slowly begins
to close the supply valve. When the water reaches the preset level, the supply
valve closes shut completely. In this example, the float acts as the observer that
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provides feedback regarding the water level. This feedback is compared with
the desired level, which is the final position of the float (see Figures 1.8 (a) and

(b)).

Example 1.7 (Fluid level) Consider a manually controlled closed-loop sys-
tem for regulating the level of fluid in a tank (see Figures 1.9 (a) and 1.9 (b)).

Flutd\‘

Inprit

Figure 1.9. (a) Human maintaining fluid level

Controller Flant
Humanand | Fluid Flow Water
Valve Tank

Water Level

Figure 1.9. (b) Diagram of control system for maintaining fluid level

Fluid input is provided to the tank from a source that you can assume is
continuous-time and time-varying. This means that the flow rate of fluid in-
put can change with time. The fluid enters a tank in which there is an outlet
for fluid output. The outlet is controlled by a valve, that can be opened or
closed to control the flow rate of fluid output. The objective in this control
scheme is to maintain a desired level of fluid in the tank by opening or closing
the valve controlling the output. Such opening and closing operations either
increase or decrease the fluid output flow rate to compensate for variations in
the fluid input flow rate.



