Comprehensive Virology

Edited by Heinz Fraenkel-Conrat University of California, Berkeley

and Robert R. Wagner
University of Virginia, Charlottesville

Volume 13

Structure and Assembly

Primary, Secondary, Tertiary, and Quaternary Structures

Virology

13

Structure and Assembly

Primary, Secondary, Tertiary, and Quaternary Structures

PLENUM PRESS · NEW YORK AND LONDON

Foreword

The time seems ripe for a critical compendium of that segment of the biological universe we call viruses. Virology, as a science, having passed only recently through its descriptive phase of naming and numbering, has probably reached that stage at which relatively few new—truly new—viruses will be discovered. Triggered by the intellectual probes and techniques of molecular biology, genetics, biochemical cytology, and high resolution microscopy and spectroscopy, the field has experienced a genuine information explosion.

Few serious attempts have been made to chronicle these events. This comprehensive series, which will comprise some 6000 pages in a total of about 18 volumes, represents a commitment by a large group of active investigators to analyze, digest, and expostulate on the great mass of data relating to viruses, much of which is now amorphous and disjointed, and scattered throughout a wide literature. In this way, we hope to place the entire field in perspective, and to develop an invaluable reference and sourcebook for researchers and students at all levels.

This series is designed as a continuum that can be entered anywhere, but which also provides a logical progression of developing facts and integrated concepts.

Volume 1 contains an alphabetical catalogue of almost all viruses of vertebrates, insects, plants, and protists, describing them in general terms. Volumes 2-4 deal primarily, but not exclusively, with the processes of infection and reproduction of the major groups of viruses in their hosts. Volume 2 deals with the simple RNA viruses of bacteria, plants, and animals; the togaviruses (formerly called arboviruses), which share with these only the feature that the virion's RNA is able to act as messenger RNA in the host cell; and the reoviruses of animals and plants, which all share several structurally singular features, the

viii Foreword

most important being the double-strandedness of their multiple RNA molecules.

Volume 3 addresses itself to the reproduction of all DNA-containing viruses of vertebrates, encompassing the smallest and the largest viruses known. The reproduction of the larger and more complex RNA viruses is the subject matter of Volume 4. These viruses share the property of being enclosed in lipoprotein membranes, as do the togaviruses included in Volume 2. They share as a group, along with the reoviruses, the presence of polymerase enzymes in their virions to satisfy the need for their RNA to become transcribed before it can serve messenger functions.

Volumes 5 and 6 represent the first in a series that focuses primarily on the structure and assembly of virus particles. Volume 5 is devoted to general structural principles involving the relationship and specificity of interaction of viral capsid proteins and their nucleic acids, or host nucleic acids. It deals primarily with helical and the simpler isometric viruses, as well as with the relationship of nucleic acid to protein shell in the T-even phages. Volume 6 is concerned with the structure of the picornaviruses, and with the reconstitution of plant and bacterial RNA viruses.

Volumes 7 and 8 deal with the DNA bacteriophages. Volume 7 concludes the series of volumes on the reproduction of viruses (Volumes 2-4 and Volume 7) and deals particularly with the single- and double-stranded virulent bacteriophages.

Volume 8, the first of the series on regulation and genetics of viruses, covers the biological properties of the lysogenic and defective phages, the phage-satellite system P 2-P 4, and in-depth discussion of the regulatory principles governing the development of selected lytic phages.

Volume 9 provides a truly comprehensive analysis of the genetics of all animal viruses that have been studied to date. These chapters cover the principles and methodology of mutant selection, complementation analysis, gene mapping with restriction endonucleases, etc. Volume 10 also deals with animal cells, covering transcriptional and translational regulation of viral gene expression, defective virions, and integration of tumor virus genomes into host chromosomes.

Volume 11 covers the considerable advances in the molecular understanding of new aspects of virology which have been revealed in recent years through the study of plant viruses. It covers particularly the mode of replication and translation of the multicomponent viruses and others that carry or utilize subdivided genomes; the use of proto-

Foreword

plasts in such studies is authoritatively reviewed, as well as the nature of viroids, the smallest replicatable pathogens. Volume 12 deals with special groups of viruses of protists and invertebrates which show properties that set them apart from the main virus families. These are the lipid-containing phages and the viruses of algae, fungi, and invertebrates. These groups will be followed in Volume 14 by special and/or newly characterized vertebrate virus groups (e.g., arena-, corona-, hepatitis, calici-, and bunyaviruses).

The present volume collects chapters on various topics related to the structure and assembly of viruses, dealing in detail with nucleotide and amino acid sequences, as well as with particle morphology and assembly, and the structure of virus membranes and hybrid viruses. The first complete sequence of a viral RNA is represented as a multicolored foldout.

Several subsequent volumes will deal with virus-host relationships and with methodological aspects of virus research.

Contents

Chapter	1	
Amino A	Acid Sequences of Plant and Animal Viral Proteins	
	Oroszlan and Raymond V. Gilden	
1.	Introduction	1
2.	Plant Viruses	2
	2.1. Tobacco Mosaic Virus	2
	2.2. Alfalfa Mosaic Virus	8
	2.3. Bromoviruses	9
	2.4. Turnip Yellow Mosaic Virus	11
3.	Animal Viruses	11
	3.1. Influenza Virus	11
	3.2. Picornaviruses	14
	3.3. Reovirus	16
	3.4. Nuclear Polyhedrosis Virus	16
	3.5. Hepatitis B Virus	17
	3.6. Papovaviruses	18
	3.7. Adenovirus	18
	3.8. Retroviruses	19
4.	References	29
Chapter		
Structur	e of the RNA of Eukaryotic Viruses	
H. Fraei	nkel-Conrat	
1.	Introduction	37
2.	General Features of RNA Sequencing	.38
	2.1. End-Group Analysis and Stepwise Degradation of RNA	38
	***************************************	20

xii	Contents
-----	----------

xii	Col	ntents
	2.2. Internal Sequences of Viral RNAs and Structural	
	Considerations	42
3.		46
	3.1. Bromovirus and Cucumovirus Group	46
	3.2. Alfalfa Mosaic Virus	47
	3.3. Tobacco Mosaic Virus	47
	3.4. Tymoviruses	51
	3.5. Viroids	52
	3.6. Other Plant Virus RNA Sequences	53
4.	Elucidation of Animal Virus RNA Sequences	54
	4.1. Picornaviridae	54
	4.2. Toga- and Coronaviridae	55
	4.3. Minus-Strand RNA Viruses	56
	4.4. Double-Stranded Viruses	57
	4.5. Retroviridae	57
5.	References	60
	re and Function of RNA Bacteriophages	
-	re and Function of RNA Bacteriophages	
Structur	re and Function of RNA Bacteriophages Fiers	69
Structur Walter	re and Function of RNA Bacteriophages Fiers Introduction	69 70
Structur Walter	re and Function of RNA Bacteriophages Fiers Introduction	70
Structur Walter	re and Function of RNA Bacteriophages Fiers Introduction	
Structur Walter	re and Function of RNA Bacteriophages Fiers Introduction	70 70
Structur Walter 1. 2.	re and Function of RNA Bacteriophages Fiers Introduction	70 70 75
Structur Walter 1. 2.	re and Function of RNA Bacteriophages Fiers Introduction Classification of RNA Phages 2.1. RNA Coliphages 2.2. RNA Bacteriophages of Other Genera Architecture of the Virion	70 70 75 79
Structur Walter 1. 2.	re and Function of RNA Bacteriophages Fiers Introduction Classification of RNA Phages 2.1. RNA Coliphages 2.2. RNA Bacteriophages of Other Genera Architecture of the Virion 3.1. General Properties.	70 70 75 79 79
Structur Walter 1. 2.	Introduction Classification of RNA Phages 2.1. RNA Coliphages 2.2. RNA Bacteriophages of Other Genera Architecture of the Virion 3.1. General Properties 3.2. Coat Protein 3.3. A Protein 3.4. Viral RNA	70 70 75 79 79 84
Structur Walter 1. 2.	re and Function of RNA Bacteriophages Fiers Introduction Classification of RNA Phages 2.1. RNA Coliphages 2.2. RNA Bacteriophages of Other Genera Architecture of the Virion 3.1. General Properties 3.2. Coat Protein 3.3. A Protein 3.4. Viral RNA Structure of the Viral RNA	70 70 75 79 79 84 88
Structur Walter 1. 2.	Introduction Classification of RNA Phages 2.1. RNA Coliphages 2.2. RNA Bacteriophages of Other Genera Architecture of the Virion 3.1. General Properties 3.2. Coat Protein 3.3. A Protein 3.4. Viral RNA Structure of the Viral RNA 4.1. Terminal Sequences	70 70 75 79 79 84 88 94
Structur Walter 1. 2.	Introduction Classification of RNA Phages 2.1. RNA Coliphages 2.2. RNA Bacteriophages of Other Genera Architecture of the Virion 3.1. General Properties 3.2. Coat Protein 3.3. A Protein 3.4. Viral RNA Structure of the Viral RNA 4.1. Terminal Sequences 4.2. Internal Oligonucleotides	70 70 75 79 79 84 88 94 99 99
Structur Walter 1. 2.	Introduction Classification of RNA Phages 2.1. RNA Coliphages 2.2. RNA Bacteriophages of Other Genera Architecture of the Virion 3.1. General Properties 3.2. Coat Protein 3.3. A Protein 3.4. Viral RNA Structure of the Viral RNA 4.1. Terminal Sequences 4.2. Internal Oligonucleotides 4.3. Specifically Protected Regions	70 70 75 79 79 84 88 94 99
Structur Walter 1. 2.	Introduction Classification of RNA Phages 2.1. RNA Coliphages 2.2. RNA Bacteriophages of Other Genera Architecture of the Virion 3.1. General Properties 3.2. Coat Protein 3.3. A Protein 3.4. Viral RNA Structure of the Viral RNA 4.1. Terminal Sequences 4.2. Internal Oligonucleotides 4.3. Specifically Protected Regions 4.4. Approaches Leading to Partial Sequences of R17	70 70 75 79 79 84 88 94 99 99
Structur Walter 1. 2.	Introduction Classification of RNA Phages 2.1. RNA Coliphages 2.2. RNA Bacteriophages of Other Genera Architecture of the Virion 3.1. General Properties 3.2. Coat Protein 3.3. A Protein 3.4. Viral RNA Structure of the Viral RNA 4.1. Terminal Sequences 4.2. Internal Oligonucleotides 4.3. Specifically Protected Regions 4.4. Approaches Leading to Partial Sequences of R17 and f2 RNA and to the Total Sequence of MS2	70 70 75 79 84 88 94 99 99 106 111
Structur Walter 1. 2.	Introduction Classification of RNA Phages 2.1. RNA Coliphages 2.2. RNA Bacteriophages of Other Genera Architecture of the Virion 3.1. General Properties 3.2. Coat Protein 3.3. A Protein 3.4. Viral RNA Structure of the Viral RNA 4.1. Terminal Sequences 4.2. Internal Oligonucleotides 4.3. Specifically Protected Regions 4.4. Approaches Leading to Partial Sequences of R17 and f2 RNA and to the Total Sequence of MS2	70 70 75 79 79 84 88 94 99 99

Contents xiii

		eotide Sequence of Small Qβ Replicase	1.40
		emplate RNAs	149
		erminal Elongation, Reverse Transcription,	151
_		d Cloning of Phage RNA	151
5.	_	Functions of the Bacteriophage Genome	153
		Untranslated Regions	153
		Proteins	155
		of the Genetic Code	157
		latory Systems Controlling the Expression of	
		e Viral Genes	161
		nination Regions	168
		A Phage Mutants	169
		eral Properties of the Viral Nucleotide	
		Sequence	174
6.	•	g Remarks	178
7.			179
		ews	179
	7.2. Speci	ific References	179
DNA Se		Viral Genomes	
0111111 11	2.710		
1.	Introductio	on	205
	1.1. The S	Sanger and Coulson Sequencing Method	206
	1.2. The !	Maxam and Gilbert Sequencing Method	208
•	1.3. Chair	n-Termination Sequencing Method	212
		r Methods of Sequencing DNA	214
2.	DNA Sequ	ences from Bacteriophage Genomes	219
	2.1. The I	Bacteriophage $\lambda \dots \dots \dots \dots$	219
	2.2. Bacte	eriophages P2, 299, and 186	227
	2.3. Bacte	eriophage T7	228
	2.4. Bacte	eriophage $\phi X 174 \dots$	229
		eriophage G4	242
		eriophage S13	242
		eriophages fl, fd, M13, and ZJ-2	243
3.		ences from Animal Viruses	253
,		an Virus 40	253
	3.2. Polyc		264

		ontents
	3.3. Adenoviruses	265
	3.4. Adeno-Associated Virus	272
4.	General Conclusions	272
5.	References	274
Chapter	5	
Viral M	embranes	
Richard	W. Compans and Hans-Dieter Klenk	
1.	Introduction	202
2.	Introduction	293 294
۷.	2.1. Proteins	294 294
	2.2. Lipid Bilayer	295
	2.3. Carbohydrates	293 297
. 3.	Viral Membrane Structure and Assembly	298
٠,	3.1. Arenaviruses	298 ·
	3.2. Bunyaviruses	300
	3.3. Coronaviruses	302
•	3.4. Herpesviruses	304
	3.5. Myxoviruses	304
	3.6. Paramyxoviruses	330
	3.7. Poxviruses	343
	3.8. Rhabdoviruses	347
	3.9. Retroviruses: C-Type Particles	356
	3.10. Togaviruses	364
4.	Conclusions	372
	4.1. Viral Membrane Structure	372
	4.2. Biogenesis and Assembly of the Envelope	374
5.	References	377
		377
Chapter	6	
denovir	us Structural Proteins	
Harold S	S. Ginsberg	
1.	Introduction	409
2.	Classification	410

Contents

3.	The Virion	411			
	3.1. Chemical Composition	411			
	3.2. Architecture	413			
4.	Synthesis of Viral Proteins	417			
5.					
	A Critique	419			
6.	The Hexon	421			
	6.1. Morphology	421			
	6.2. Immunological Characteristics	423			
	6.3. Chemical Characteristics	425			
	6.4. Physical Characteristics	430			
	6.5. Genes Affecting Hexon Structure and Function	431			
	6.6. Model of Hexon Structure	432			
7.	The Penton	433			
	7.1. General Description	433			
	7.2. Penton Base	434			
	7.3. Fiber	434			
	7.4. Immunological Characteristics of the Penton and				
	Its Subunits	437			
	7.5. Biological Functions of the Penton and Its				
	Subunits	438			
8.	Other Capsid Proteins	441			
9.	The Core	445			
10.	An Overview	446			
11.	References	448			
Chapter	7				
The Ade	novirus-SV40 Hybrid Viruses				
	· ·				
Cepnas	T. Patch, Arthur S. Levine, and Andrew M. Lewis, Jr.				
1.	Introduction	459			
2.	SV40 and the Adenoviruses	461			
	2.1. SV40	461			
	2.2. The Adenoviruses	462			
	2.3. SV40 and Adenovirus Transcription during Lytic	402			
	Infection	465			
	2.4. Viral Transcription in Cells Transformed by SV40	40 3			
	or the Adenoviruses	467			
	2.5. Interactions between SV40 and the Adenoviruses	707			
	during Lytic Infection	468			
	• • • • • • • • • • • • • • • • • • • •	TU0			

3.	SV40 Enhancement of Adenovirus Replication in
1	Monkey Cells
	3.1. Adenovirus DNA and RNA Synthesis in Unenhanced and SV40-Enhanced MKC
	3.2. Adenovirus Protein Synthesis in Unenhanced and SV40-Enhanced MKC
	3.3. Enhancement: An Early SV40 Function
	3.4. Summary of SV40 Enhancement of Adenovirus Replication in MKC
	3.5. SV40 Complementation of Adenovirus 5
	Temperature-Sensitive Mutants
4.	Discovery of the Adenovirus 7-SV40 Hybrid Virus
	4.1. The Adenovirus 7-SV40 Population: A Mixture of Nonhybrid Adenovirus 7 and Defective Adenovirus 7-SV40 Hybrid Virus
	4.2. The Physical Structure of the Adenovirus 7-SV40 Hybrid Genome
	4.3. Heteroduplex Mapping of the Adenovirus 7-SV40 Hybrid Genome
	4.4. SV40 RNA Transcription in Cells Infected with Ad7+
	4.5. Summary of Structure and Function of the Adenovirus 7-SV40 Hybrid Virus
5.	DNA-DNA Recombination in the Adenoviruses and the
	Adenovirus-SV40 Hybrid Viruses
	5.1. A Hypothetical Model for the Formation of the Adenovirus 7-SV40 Hybrid Genome
	5.2. Transcapsidation
6.	· ,
	6.1. An Ad5 ⁺⁺ Hybrid Virus Population
	6.2. The Adenovirus 2-SV40 Hybrid Virus Population Ad2++
	6.3. Plaque Isolation from the Ad2 ⁺⁺ Population
7.	Biological Properties of Ad2++HEY and Ad2++LEY
	7.1. The Physical Structures of the Hybrid Viral Genomes in Ad2++HEY and Ad2++LEY
	7.2. Heteroduplex Mapping of the Hybrid Viral
	Genomes in Ad2++HEY and Ad2++LEY
	7.3. SV40 Transcription in Cells Infected with
	Ad2++HEY and Ad2++LEY

Contents xvii

	7.4.	Adenovirus 2-SV40 Hybrid Viruses Derived from		
_		the Ad2++HEY Population	495	
8.				
		ybrid Viruses	496	
	8.1.		·	
		Nondefective Adenovirus 2-SV40 Hybrid		
		Viruses	497	
	8.2.	The Physical Structures of the Nondefective		
		Adenovirus 2-SV40 Hybrid Genomes	498	
	8.3.	The Origin of the Nondefective Adenovirus		
		2-SV40 Hybrid Viruses	501	
	8.4.	SV40 RNA Transcription during Lytic Infection		
		with Nondefective Adenovirus 2-SV40 Hybrid		
		Viruses	505	
	8.5.	Adenovirus 2 Transcription during Lytic Infection		
		with Nondefective Adenovirus 2-SV40 Hybrid		
		Viruses	506	
	8.6 .	SV40 Protein Synthesis in Cells Lytically Infected		
		with the Nondefective Adenovirus 2-SV40		
		Hybrid Viruses	508	
9.	Host	Range Mutants of Ad2+ND ₁	513	
10.	Rever	tants of Host Range Mutants of Ad2+ND ₁	514	
11.	Temp	erature-Sensitive Mutants of Ad2+ND ₁	515	
12.	Early	SV40 Antigens and Functions Expressed by the		
		ondefective Adenovirus 2-SV40 Hybrid Viruses	516	
	12.1.		517	
	12.2.	SV40 Enhancement of Adenovirus Replication in		
		Monkey Kidney Cells	518	
	12.3.		519	
13.	Cell T	ransformation and Tumor Induction by SV40 and		
	the	e Adenoviruses	519	
	13.1.	and I dillor Induction by		
		Ad7+	522	
	13.2.	Oncogenicity of Transcapsidated Adenovirus		
		7-SV40 Hybrid Viruses	523	
	13.3.	Cen Transformation and Tumor Induction by		
		Defective Adenovirus-SV40 Hybrid Viruses		
		That Yield Infectious SV40	525	
	13.4.	Cell Transformation and Tumor Induction by		
		Adenovirus 2 and the Nondefective		
		Adenovirus 2-SV40 Hybrid Viruses	526	
14.	Refere	ences	530	

Chapte	er 8
--------	------

Bacteriophage Structur

Frederick A. Eiserling

1.	Introduction	543
	1.1. Advantages of Bacteriophages for Structural	•
	Studies of Viruses	543
	1.2. Methods of Structure Analysis	544
2.	Structure of Bacteriophage Heads and Capsids	546
	2.1. Isometric Phage and Head Structure: λ, P22, T7, and P2	547
	2.2. \(\lambda \) Head Structure	549
	2.3. P22 Head Structure	549
	2.4. T7 Head Structure	551
	2.5. P2 Head Structure	551
	2.6. Structure of T5 and SP01 Heads	551
	2.7. Elongated Head Structures: ϕ 29, T4, and CbK	554
	2.8. φ29 Structure	555
	2.9. T4 Head Structure	556
	2.10. Phage φCbK Head Structure	563
3.	Structure of Phage Tails	565
	3.1. Short Hexagonal Tail Structure	565
	3.2. Tubular Tail Structure	567
	3.3. Contractile Tail Structure	568
4.	Discussion	571
	4.1. Head Structure and Assembly	571
	4.2. Tail Structure	573
5.	Summation	574
6.	References	575
Chapter	9	
Genetic	Control of Complex Bacteriophage Assembly	
William	B. Wood and Jonathan King	
1.	Introduction	581
	1.1. Scope and Purposes of This Chapter	581
	1.2. Approaches to the Problem of Phage Assembly	582

Contents		xix
	•	

2.	Assembly of Phage Heads	584
	2.1. General Problems of Head Assembly	584
	2.2. λ Head Assembly	586
	2.3. P22 Head Assembly	589
	2.4. \cdot T7, T3, and ϕ 29 Head Assembly	591
	2.5. T4 Head Assembly	592
3,	Assembly of Phage Tails	597
	3.1. General Problems of Tail Assembly	597
	3.2. P22 and T7 Tail Assembly	598
	3.3. λ Tail Assembly	599
	3.4. T4 Tail Assembly	602
•	3.5. Assembly of Other Phage Tails	605
4.	Head-Tail Joining	605
5.	Assembly of Phage Tail Fibers	606
6.	Role of the Host Cell in Phage Assembly	609
7.	Discussion, Conclusions, and Remaining Problems	610
	7.1. General Nature of Assembly Pathways'	610
	7.2. Sequential Ordering	612
	7.3. Nonstructural Accessory Proteins in Assembly	613,
	7.4. Specification of Dimensions	616
	7.5. Gene Clustering and Control of Synthetic Rates	618
	7.6. Lattice Transitions	619
	7.7. The Problem of DNA Packaging	620
	7.8. Remaining Problems and Future Applications	623
8.	References	624
	Kererences	624

CHAPTER 1

Amino Acid Sequences of Plant and Animal Viral Proteins

Stephen Oroszlan and Raymond V. Gilden

Biological Carcinogenesis Program Frederick Cancer Research Center Frederick, Maryland 21701

1. INTRODUCTION

This chapter will present currently available primary structure data on the proteins of a variety of plant and animal viruses. Excellent descriptions of methods for the determination of amino acid sequences of proteins are found in several review articles and books (Hirs, 1967; Schroeder, 1968; Blackburn, 1970; Needleman, 1970; Starbuck, 1970; Hirs and Timasheff, 1972; Niall, 1973; Perham, 1975) and therefore will not be presented here. Since the pioneering studies on TMV in the early 1960s which contributed to establishing the principle of colinearity of gene and protein, sequencing efforts have contributed to an understanding of evolutionary relationships among other plant and animal viruses. Such data can also provide practical end points such as the design of synthetic vaccines; this may be especially crucial in cases where complete freedom from viral nucleic acids is essential. The condevelopment of sensitive automated microsequencing procedures utilizing stepwise Edman degradation, high-sensitivity methods for identification of amino acids, radiolabeled reagents, and proteins with intrinsic radioactivity (Edman and Begg, 1967; Jacobs et

al., 1974; McKean et al., 1974; Jacobs and Niall, 1975; Brauer et al., 1975; Oroszlan et al., 1975a; Silver and Hood, 1975; Ballou et al., 1976; Bridgen, 1976; Henning et al., 1976; Vitetta et al., 1976; Zimmerman et al., 1976) will allow data gathering on minor (by mass) virion polypeptides, for example, the reverse transcriptases of retroviruses, which until recently would have required the availability of enormous amounts of virus. The concluding section on retrovirus proteins, the 'major interest of the authors' laboratory, will summarize sequence data and recent evidence of viral groupings based on immunological data.

2. PLANT VIRUSES

2.1. Tobacco Mosaic Virus

Tobacco mosaic virus (TMV), which was the first virus to be identified and crystallized, is a 300-nm-long, rodlike particle with a diameter of 15 nm and an approximate particle weight of 4×10^7 . The virion is composed of 5% RNA (single-stranded, single chain) and 95% protein. The protein component representing the viral coat consists of 2130 identical polypeptide subunits, each with an approximate molecular weight of 17,500, consisting of 158 amino acid residues (Fraenkel-Conrat, 1968; Dayhoff, 1972; Benjamini et al., 1972; Smith, 1977). The coat protein of TMV vulgare (common strain) was the first viral protein whose complete amino acid sequence was determined (Tsugita et al., 1960). Now protein sequences of several naturally occurring strains as well as artificially induced mutants are known.

The complete amino acid sequences of six TMV strains—vulgare (V), OM, dahlemense (D), cowpea (CP), U2, and Holmes ribgrass (HR)—are aligned in Fig. 1.

The N termini (serine and alanine) are acetylated in all strains except in U2, which has proline at the N terminus. As pointed out by Fraenkel-Conrat (1968), it appears probable that the acetyl group fulfills a blocking function, protecting the peptide chain against aminopeptidases, and that this function proves redundant in a mutant carrying an N-terminal proline which is not susceptible to cleavage by the known exopeptidases (Hill, 1965).

Those amino acids which are positionally different from the sequence of the common strain (V) protein are underlined in Fig. 1. In order to maintain positional homology (best fit) in the sequence of CP strain protein, which is three residues longer, an insert (glutamic acid)

is placed between residues 64 and 65 (Rees and Short, 1975). The HR strain is two residues shorter than the V protein and appears to have a gap consisting of residues 148 and 149. The OM strain has only three amino acid substitutions: in positions 50 (Glu—Gln), 129 (Ile—Val), and 153 (Thr—Asn). The single cysteine appears in position 27 in all strains except CP, where it is substituted by leucine. In general, most of the observed exchanges involve only the smaller and hydrophilic residues, although there are a large number of exceptions. The most variable regions of the protein chain seem to be those from residue 19 to 28, from 49 to 68, from 97 to 101, and from 138 to 158. These regions include a high proportion of hydrophylic residues; therefore, they may represent the positions of the folded protein in the intact virus which may be in contact with the solvent (Fraenkel-Conrat, 1968; Durham and Butler, 1975).

The segments from residue 87 to 94 and from 113 to 122 are identical in all strains except CP. These two regions were thought to be completely conserved sequences until the sequence of the CP strain protein became available just 4 years ago (Rees and Short, 1975). It has been assumed that these regions compose the RNA binding site. They contain four of the six conserved positive charges in the protein (arginine residues 90, 92, 113, 122) which could neutralize the negative charges of the RNA chain-phosphate backbone. The CP strain also has arginine in all the above positions except position 122, where it is substituted by histidine. Apart from the above regions only residues 2, 4, 17, 18, 36-38, 41, 61, 63, 82-83, 88-92, 94, 128, 132, 137, 140, 144-145, 150, and 156 are unchanged in all the six strains for which the complete sequences are given in Fig. 1.

The HR and CP strains appear to be evolutionarily the most distantly related to the other more closely related strains (Dayhoff, 1972). The HR protein has 80 amino acid changes from the common V strain of TMV and CP coat protein has a total of 98 changes (Rees and Short, 1975). The percent differences between the sequences of the above six TMV strains are shown in Table 1. These correspond very well with the previous ordering of TMV strains into groups based on amino acid compositional differences (Fraenkel-Conrat, 1974). The results of nucleic acid hybridization experiments, however, did not reveal a quantitative relationship similar to that shown by amino acid sequence data. Even those strains among the various classes which differ least in primary structure of coat protein (vulgare and dahlemense, representing classes A and B, respectively) were found to show no apparent nucleotide sequence homology. A possible explanation is that