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Preface

Vol. 2 of “Progress in Materials Analysis’’ contains the lectures of the
12th Colloquium on Materials Analysis, Vienna, May 13—15, 1985. Due to
the top level international participation from industry and research insti-
tutions the proceedings offer a survey of the present state and current
trends in materials analysis of high actuality.

The major topics covered are surface, micro and trace analysis of materials
with a special emphasis on metals but also including other materials like
ceramics, semiconductors, polymers. According to the strategy of the
meeting attention is focussed on an interdisciplinary approach to materials
science — combining analytical chemistry, solid state physics and technol-
ogy.

Therefore progress reports on modern analytical technique like SIMS, SNMS,
AES, XPS, Positron Annihilation Spectroscopy, EPMA, STEM, LAMMS, etc.
are contained as well as presentations on the development of materials.
The majority of the contributions centers on the treatment of important
problems in materials science and technology by a (mostly sophisticated)
combination of physical and chemical analytical techniques.

Vienna, July 1985 M. Grasserbauer
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The following additional papers of this Colloquium will be published in
Mikrochimica Acta 1985 II, No. 1-2:

P. Golob: X-Ray Fluorescence Analysis in the Scanning Electron Microscope

J. Linke, H. Hoven, K. Koizlik, K. Schmidt: Quantitative Structural Analysis
Using Interference Layer Metallography

M. Mayr, K. Késter, J. Angeli, J. Glocker: Electron Microprobe Investigations
on Phase Boundaries Steel-Enamel

B. Vorsatz, Gy. Kdroly, A. Kirnerné-Kiss: Analytical Possibilities for Deter-
mining the Demand for the Optimal Quantity of Deoxidants Influencing
Favourably the Morphology of Nonmetallic Inclusions in Steels

J. Forsyt, W. Przybyto: The Effect of the Solidifaction Conditions on
Hydrogen Contents in Cobalt

J. Pirs, A. Zalar: Some Results of Investigations Into Relationship Between
a Few Elements of Nodular Graphite Cast Iron and Nodular Graphite

G. Kudermann, K.-H. Blaufuf3: Analytical Procedures for the Determination
of Uranium and Thorium Traces in Aluminium
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Surface Characterization of Thin Organic Films on Metals

By
D. M. Hercules
With 19 Figures

The topic of thin organic films on metals will bring to mind different models
for different individuals, depending upon their background and scientific
area. For example, one might think of a polymer layer on a metal, such as
the coating on the inside of a food can, a protective plastic coating on an
automobile bumper, or decorative construction panels used widely in the
building industry. On the other hand, one might think of organic contami-
nants on metal contacts in integrated circuits or contamination of semi-
conductor processing lines. A third possibility would be layers deposited
on metals, such as those used in photo-resist technology. In short, thin poly-
mer films on metals is a topic which covers many areas of materials
science.

The area of polymer coated metals is an important area of developing
technology. Considerable chemistry is associated with thin polymer layers,
and its understanding is important to continued progress in this field. Con-
sider, for example, the chemistry of etched layers. Another very important
area is the chemical characteristics of plasma deposited polymer films; these
are not identical to the bulk polymer prepared from the same monomer.
The whole topic of adhesion is one which relates directly to this area. Thus,
chemistry on polymer surfaces is of both scientific and technological
interest.

In all of the above, it is the word “polymers” that stands out. Therefore,
polymers will represent the major focus of this paper. Indeed, in most
cases, organic materials on metals really means polymeric materials on
metals.

Thick layers of polymers on metals have been characterized extensively
by FTIR, Rutherford backscattering, and similar methods. Thin layers of
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polymers, where the thickness of the layer is less than the sampling depth
of the technique, have been characterized by conventional surface tech-
niques. For example, ESCA has been used widely to study a variety of
polymer layers on metals, polymer surfaces, and even bulk materials.
However, characterization of polymeric films by ESCA suffers from the
fact that the chemical shifts of carbon, nitrogen, and oxygen for organic
functional groups are frequently less than optimum. Also, although some
of these techniques can be used for examining small areas on polymers,
none of them represents a true microprobe.

The present manuscript has been written to summarize some of our recent
work on polymer characterization using mass spectrometry. The mass
spectra are generated either by photon or ion beam techniques. There will
be four topics discussed here:

1) Comparison of ion and photon techniques for characterizing polymer
surfaces.

2) Quantitative characterization of polymers using mass spectrometry.

3) Time-of-flight SIMS studies of polymers.

4) Mapping of organic materials on surfaces using the laser microprobe.

Comparison of ESCA, ISS, and SIMS for Acrylic Polymers

Acrylic polymers represent an excellent set of material for comparison of
surface techniques, both qualitatively and quantitatively. These films have
been used to compare data obtained using ESCA, ISS, and static SIMS. The
polymers investigated include those containing short alkyl chains, isomeric
C, alkyls, cyclic C¢ alkyls, and long chain alkyls®.

Fig. 1 shows the ESCA spectra for a set of acrylics in the Cls and Ols
regions. The Cls envelopes can be resolved into three peaks assignable
to C— H, C—0, and C=0 at 285.0, 287.0, and 288.6 ¢V, respectively.
The Ols envelope from all polymers includes peaks due to at least two
oxygens and is centered at 532 eV. The ESCA binding energies would not
be expected to vary significantly for these polymers, and thus distinction
between the various polymers using ESCA chemical shifts is not
possible.

Fig. 2 shows a plot of the C1s/O1s intensity ratios versus the number of
carbons in the monomer unit for the acrylic polymers studied. There is a
linear relationship between these variables. Thus, although ESCA is limited
to a sampling depth of 30—50 A for polymers, this is sufficient to give
essentially bulk results. Thus, it would be possible to identify (or come to
close to identifying) a polymer on the basis of the C1s/O1s intensity ratio
using ESCA.

Fig. 3 shows a comparable plot of the C/O peak height ratios from ISS
for the same series of polymers. Although the linear correlation coefficient
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Fig. 1. ESCA core level results for short alkyl ester groups’
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Fig. 2. Plot of ESCA carbon/oxygen peak area intensity ratio vs. the number of carbons
in monomer unit (number of oxygens = 2 at all times) for the poly(methacrylate) series’
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carbons in monomer unit (number of oxygens= 2 at all times) for the poly(methacrylate)
series’

for the ISS data is not as good as for the ESCA data, there is a linear
response, and a good correlation between the ISS intensity ratio and the
number of carbon atoms in the monomer unit. Three polymers deviated
significantly from the plot: isopropyl, benzyl, and octadecyl methacrylates.
At the time the data were obtained, it was thought that steric effects may be
responsible for this behavior; it has been confirmed subsequently that
stereo-irregularity of polymers can have a significant effect on the ISS
intensity data?.

Fig. 4 shows the ESCA data obtained for the isomeric butyl methacrylates.
The C1s/O1s intensity ratios are: 2.42, 2.38, 2.10, and 2.28 for the n-butyl,
sec-butyl, iso-butyl, and t-butyl isomers, respectively. Given that the relative
standard deviation for the intensity ratios is +0.12 (abs.), one cannot disting-
uish between the four isomers on the basis of the ESCA intensity measure-
ments. Similarly, the ISS intensity ratios are closely grouped, as indicated
by the four closely spaced data points for the C, isomers in Fig. 3.

Fig. 5 shows the static SIMS spectra for the four butyl isomers. There are
two spectral features which can be used to differentiate among the various
isomers; these are the intensity of the m/z 57 peak (due to the butyl cation)
relative to the base peak, and the relative intensities of peaks due to ions
from bond breaking events involving the butyl ester group. The relative
intensities of the m/z 57 peak (to the base peak) are 12% for the n-butyl,
22% for the iso-butyl, 41% for the sec-butyl, and 100% (i.c., base peak)
for the t-butyl isomers, respectively. Given that the relative standard devia-
tions for relative intensity measurements using SIMS are better than +20%,
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the relative intensity of the m/z 57 peak should be sufficient to distinguish
between the isomers. In addition, the relative intensities for the m/z 27, 29,
39, and 41 peaks vary for the four isomers. The base peak for the n-butyl
isomer is 27, for the s-butyl isomer it is 29, and for the isobuty! isomer,

27 and 41 are essentially base peak. The base peak for the t-butyl isomer is
m/z 57. Thus, by combining the relative intensity of the m/z 57 peak and
the intensities of the 27, 29, and 41 peaks, it is possible to distinguish
among these polymers using SIMS.

The C, acrylic isomers have been used in another way to demonstrate the
value of SIMS for studying events which occur in layers sufficiently thin
that they cannot be detected by ESCA. The hydrolysis of poly(t-butylmeth-
acrylate (PTBMA) occurs as shown eq. 1.

T 0 CH, T
| I H* OII-
CH3—$—C—O—(IZ—CH3 +H,0 ——— CH3—(,‘,—COOH (1)
CH, CH, CH,

|

=1 - n
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Static SIMS Results Poly (alkyl-methacrylates)
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Fig. 5. Static SIMS results for short alky! ester groups: methyl, base peak = 15 amu;
ethyl, base peak = 29 amu; isopropyl, base peak = 43 amu®

T a

The t-butyl carbonium ion at m/z 57 is the base peak in the static SIMS
spectrum of the untreated polymer. It is clear that as hydrolysis occurs on
the surface of this polymer, one will see a decrease in the m/z 57 peak
relative to peaks which are characteristic of the polymer backbone. There-
fore, t-butyl acrylic polymer films were exposed to mild conditions of
hydrolysis, namely, treatment at pH 4.0, 7.0, and 10.0, for 5 min at 23 °C.
The ESCA spectra of the treated polymers are qualitatively similar; the
Cls/Ols intensity ratios measured for the polymers after treatment are
2.0£0.1; the untreated polymer is 2.25%0.143. Thus, there is no clear
statistical difference among the treated samples and no significant differ-
ence from the untreated polymer.

The static SIMS spectra for the PTBMA blank and samples treated at pH’s 4,
7, and 10, are shown in Fig. 6. There is a distinct difference in the relative
intensities of the m/z 57 peaks in the treated and untreated samples. To
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make the comparison more quantitative, three peaks were investigated which
are characteristic of bond breaking events involving the side chain: m/z 57,
41, and 29. Similarly, three peaks were monitored which are due to ions
from bond breaking within the backbone: m/z 39, 27, and 15. Peak intensity
ratios were compared to test the consistency of the ratios within each set.
Thus, ratios were obtained for sets of sidechain/backbone, backbone/back-
bone and sidechain/sidechain peaks. These data are plotted in Fig. 7. First,
observe the plots of I(57)/1(29) (sidechain/sidechain) and I(15)/I(39) (back-
bone/backbone). These are essentially constant for the three treatments and
not significantly different from the ratio in the untreated sample. In
contrast, plots of I(57)/1(39), I(57)/1(27), and 1(29)/1(27) (all sidechain/
backbone) all show a maximum at pH = 7, which is significantly lower than
the untreated sample but significantly higher than either the pH = 10 or
pH = 4 samples. These results are readily interpreted by considering ester
hydrolysis is both acid and base catalyzed. Thus, in highly acid or highly
basic media the reaction rate will be faster than at a neutral pH; one would

2.0 ' .
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o
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e |5b R . |
> ° L ]
z |
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2 o
=
S 1.or o 7
(9]
a 0
2 T 1
= o
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Fig. 7. Plot of static SIMS peak height intensity ratio vs. sample treatment pH (5 min)
for mild reaction conditions. Values are given in Table 2. Key: A, Is,/I5 (S/B);
0, I57/127 (S/B); O, Lo /57 (S/B); m, 115/l (B/B); ®,Is;/I5 (S/8)(3)



