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Abstract

It is a deep-seated tradition in science to view the use of natural languages in scientific theories as a
manifestation of mathematical immaturity. The rationale for this tradition is that natural languages are
lacking in precision. However, what is not recognized to the extent that it should, is that adherence to
this tradition carries a steep price. In particular, a direct consequence is that existing scientific theories
do not have the capability to operate on perception-based information exemplified by "Most Finns are
honest." Such information is usually described in a natural language and is intrinsically imprecise,
reflecting a fundamental limitation on the cognitive ability of humans to resolve detail and store
information. Because of their imprecision, perceptions do not lend themselves to meaning-
representation through the use of precise methods based on predicate logic. This is the principal
reason why existing scientific theories do not have the capability to operate on perception-based
information.

In a related way, the restricted expressive power of predicate-logic-based languages rules out the
possibility of defining many basic concepts such as causality, resemblance, smoothness and relevance
in realistic terms. In this instance, as in many others, the price of precision is over-idealization and
lack of robustness.

In a significant departure from existing methods, in the approach which is described in this talk the
high expressive power of natural languages is harnessed by constructing what is called a precisiated
natural language (PNL).

In essence, PNL is a subset of a natural language (NL) -- a subset which is equipped with constraint-
centered semantics (CSNL) and is translatable into what is called the Generalized Constraint
Language (GCL). A concept which has a position of centrality in GCL is that of a generalized
constraint expressed as X isr R, where X is the constrained variable, R is the constraining relation, and
isr (pronounced as ezar) is a variable copula in which r is a discrete-valued variable whose value
defines the way in which R constrains X. Among the principal types of constraints are possibilistic,
veristic, probabilistic, random-set, usuality, and fuzzy-graph constraints.

With these constraints serving as basic building blocks, more complex (composite) constraints may be
constructed through the use of a grammar. The collection of composite constraints forms the
Generalized Constraint Language (GCL). The semantics of GCL is defined by the rules that govern
combination and propagation of generalized constraints. These rules coincide with the rules of
inference in fuzzy logic (FL).

A key idea in PNL is that the meaning of a proposition, p, in PNL may be represented as a generalized
constraint which is an element of GCL. Thus, translation of p into GCL is viewed as an explicitation
of X, R and r. In this sense, translation is equivalent to explicitation.

The concept of a precisiated natural language and the associated methodologies of computing with
words and the computational theory of perceptions open the door to a wide-ranging generalization and
restructuring of existing theories, especially in the realms of information processing, decision and
control. In this perspective, what is very likely is that in coming years a number of basic concepts and



techniques drawn from linguistics will be playing a much more important role in scientific theories
than they do today.

Biosketch
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Panel Discussion

“QOh sure, my method is connectionist too. Who said it’s not?”

Panel Organizer: Asim Roy

Decription:

Some claim that the notion of connectionism is an evolving one. Since the publication of the PDP
book (which enumerated the then accepted principles of connectionism), many new ideas have been
proposed and many new developments have occurred. So according to these claims, the
connectionism of today is different from connectionism of yesterday. Examples of such new
developments in connectionism include hybrid connectionist-symbolic models (Sun 1995, 1997),
neuro-fuzzy models (Keller 1993, Bezdek 1992), reinforcement learning models (Kaelbling et al.
1994, Sutton and Barto 1998), genetic/evolutionary algorithms (Mitchell 1994), support vector
machines (references), and so on. In these newer connectionist models, there are many violations of
the “older” connectionist principles. One of the simplest violations is the reading and setting of
connection weights in a network by an external agent in the system. The means and mechanisms of
external setting and reading of weights were not envisioned in early connectionism. Why do we need
local learning laws if an external source can set the weights of a network? So this and other features of
these newer methods are obviously in direct conflict with early connectionism.

In the context of these algorithmic developments, it has been said that maybe nobody at this stage has
a clear definition of connectionism, that everyone makes things up (in terms of basic principles) as
they go along. Is this the case? If so, does this pose a problem for the field? To defend this situation,
some argue that connectionism is not just one principle, but many? Is that the case? If not, should we
redefine connectionism given the needs of these new types of learning methods and on the basis of
our current knowledge of how the brain works?

This panel intends to closely examine this issue in a focused and intensive way. Debates are
expected. We hope to at least clarify some fundamental notions and issues concerning connectionism,
and hopefully also make some progress on understanding where it needs to go in the near future.

Panelists:
Shun-Ichi Amari, Japan
Wilodzislaw Duch, Poland
Kunihiko Fukushima, Japan
Nik Kasabov, New Zealand
Soo-Young Lee, Korea
Erkki Oja, Finland
Xin Yao, UK
Lotfi Zadeh, USA4
Asim Roy, US4
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NeuroLab 2003: A SIMULATOR THAT PRODUCES BIOLOGICALLY-BASED
EXPERIMENTAL ALTERNATIVES THAT AID IN DESIGNING DETAILED
EXPERIMENTS

GR Case, PF Balan

Columbia Univ, New York, NY 10032.

NeuroLab 2003 is an expert simulation system
that helps the laboratory experimenter design better
experiments while accounting for multiple circuit levels in
the brain. The levels make network connections (i.e., any
level connected to any other level) as well as hierarchical
relations between adjacent levels. The experimenter is
required to become thoroughly prepared through multiple
hypotheses discussions and brainstorming sessions with
senior advisors and collaborators. This preparation is
necessary for the proper utilization of NeuroLab’s
extensive expert system variations. NeuroLab 2003
provides a systematic means to conduct multi-tiered,
alternative hypotheses testing and to clarify relations
between neural levels. See top of page 2 for the basic
definition of neural levels.

1. INTRODUCTION

In order to fully appreciate how levels interact
within one another, we need to define them. A level is
identified by similar degrees of behavior (that is, common
attributes that are shared) and can be collective for the
next level. Different structural and/or functional units
may be defined the next higher level. The dynamics of a
given set of elementary functions between functional units
may define the next higher level. A level may contain
homogenous or heterogeneous elements and may perform
multiple functions at the same level. Furthermore, a level
does not have to be strictly hierarchical, that is, a level
may contain components (inputs or outputs) from any of
the levels that are below, above or at the same level. Fora
heterogeneous paradigm (or system), a level for one
function may be equivalent to the next higher level for
purposes of communication (i.e., data or information
transfer using the defined code or language that is
appropriate at the higher level, which may be the same or
change in content and/or frequency).

Levels can be defined by logic, mathematics and/or
knowledge rules. For instance, we could logically define:

level 0 as a, ~a, b, ~b, ¢, ~¢
where ~ is the logical ‘not’ operator

level 1 as aVb, bVc, a”~b, ~bV~c
where V is the logical ‘or’ & ~ logical ‘and’

level 2 as (aVby(~bV~c), (c"~a)(a"~b)

This representation works well with a highly
constrained set of operators; however, if different physical
parameters and functional interactions are involved over
some span of time, a mathematical representation [1] can
serve to allow a wide range of operations (i.e., functions)
to interact over multiple levels of organization. For
instance, at any level n, any two structural units are
defined, uj, and Ujn, then the functional interaction
between the two units is Ujjn- Then the system is driven

by equations such as:

dUjj/de+fij (U1, U125 -, Upps 815 825 --» 8p)

ij=1,...,p 1)
where the g’s are specific geometrical or
physical parameters. Chauvet’s physiological function, F,
will result from a set of elements that are hierarchically
organized and functionally interacting.

F=f(F{,Fp, ..., Fp) @
where F=0 is a constant and self-controlled.

Thus, an elementary physiological function, Fy,

is a set of L level such as L! (i.e., a hierarchical system
that produces F). Most often, the dynamics is specified
for a given time scale of the process and this defines the
level of organization. Thus, the relation in (1) is expanded

to describe an I-structural unit at level k (Lk) and a j-
structural unit at level 1 (Ll):

Uijtkl—_- fijtkl(Ulltlla - Upptnn) 3)

According to Chauvet, when Uijtk1~= 0 with

k~= 1, the related link is called an inter-levels link
because it implies equation (2). This representation works
well only when the vast majority of data are known and



hierarchically organized. Neurobiologists do not normally
have the mathematical understanding necessary to
effectively use a modeling approach to build upon these
mathematical formulations. For the very few
neurobiologists who chose to use this approach, they are
confronted with a significant knowledge acquisition and
integration problem.

The use of knowledge rules combined with an
easy-to-use graphical user interface and real-time
simulator presents a practical solution to on-going
knowledge acquisition and integration. By developing a
knowledge based, real-time simulator, called NeuroLab
2003, for use by the neurobiologist (user) to input and
analyze experimental data, rules and hypotheses,
knowledge can be developed in a similar format that
facilitates a common pooling and integration of new
findings.

For instance, here are some NeuroLab 2003

based rules with inherent level definitions:

1. AN:PN Means that the auditory

nucleus makes an excitatory

connection to the nucleus

(level 5).

The pontine nucleus has a

threshold of 0.22 mv (levels

4&5)

The climbing fiber (from the

inferior olive) makes an

excitatory connection to the

soma of the Purkinje cell

(level 2).

There’s one Purkinje cell for

every six basket cells (levels

1&2).

5. ntrans Glu @PCspines The neurotransmitter,
Glutamate, is present at the
Purkinje cell dendritic spines

2. PN thres 0.22 mv

3. cf: PC soma

4. PC ratio 6 BC

(level 0).

6. CO activate guan cyc Carbonic oxide activates
guanylate cyclase (base
level).

One basket cell has an
inhibitory connection to 150
different Purkinje cell somas
(level 2).

Purkinje cell sends out an
action potential spike train 4
/sec amplitude 0.15
millivolts (level 2).

7. BC inhib:150 pc soma

8. PC spikes 4 hz 0.15 mv

The guidelines and formal vocabulary for
many other rules will be developed by select Beta groups
under the guidance of a 'global committee' (to be defined,
by the NeuroLab 2003 team). The databases and macros
utilized by other programmatic approaches will be
formatted to provide information to a common database
and knowledge base for experimental paradigms using
NeuroLab 2003.

2. STRUCTURAL/FUNCTIONAL LEVELS
In addition to the creative use of the following levels, we

need to establish properties and timing boundaries for
each of the defined levels:

Name Description

Base Molecular

Level 0  Synaptic

Level 1  Neuron

Level 2  Sub-function (combinations of neurons)

Level 3  Sub-circuit (combinations of sub-
functions and/or lower levels)

Level 4  Zone (related to microzones or columns
in specific brain locations)

Level 5 Circuit (microzone/zone connections
that create specific behaviors)

Level 6 Process (overlapping parts of circuits
enabling multiple functioning
behaviors)

Level 7 Behavior (the outside or end response,

as viewed by the external world).

Choosing level 1 as the neuron level is arbitrary.
We choose to set the timing based on the neuron level
mainly for computational feasibility, realizing that the
collective action of molecular/synaptic properties and
events cause the neuron to react sufficiently different over
a selected time scale. Since, the time delta or simulated
time frame is variable, and for definitional purposes, we
choose to initially set the time delta to “one” millisecond.
This means from time-step, to time-step,+;, almost all
molecular and synaptic events will complete [2] and the
end result is transferred as a set of normalized and graded
signals to the neuron for collective action. For the
molecular and synaptic events that are not complete at the
end of a millisecond, they will be complete by the end of
an integral number of milliseconds. And since, all
simulated neural components are updated every
millisecond, the results of all integrated activity across all
levels are also updated. This is simulated parallel
processing per one timestep.



