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Preface

These notes result from a meeting held in Santa Barbara in August 1?83. The
purpose of the meeting was to bring together geometric topologists and differen-
tial geometers to study in depth the recent work of Simon Donaldson. Of course,
due to the beautiful and profound results of Mike Freedman, the subject of
4-manifolds had already become the focus of lively interest. Moreover, in light of
Donaldson’s result, the Freedman-Casson machinery was able to produce the
startling fact that there exist exotic differentiable struciures on R*. For these
reasons topologists have wanted to understand in depth the arguments of Donald-
son, which are based on the theory of Yang-Mills fields.

Consequently, the principal purpose of these lectures (and these notes) is to
present these arguments together with all the background material required by
someone who is not an expert in the field. The lectures are aimed. however, at
mature mathematicians with some training in geometry and topology. The task
set out here was already sufficiently exacting that no time was available for
wide-ranging discussion or excursions into physics. On the other hand, this
presentation attempts to be nearly complete. :

It should be mentioned that a seminar on this subject was run last spring at
M.S.R.I. by M. Freedman and K. Uhlenbeck. The notes of this seminar have
been prepared for publication with the assistance of D. Freed. They also provide
a detailed reference for this materjal.

The success of the conference was due to the enormous efforts of the organizing
committee: Ken Millett, Doug Moore, and Marty Scharlemann, to whom all of ys
who participated have expressed our gratitude. I would also like to thank Susan
Crofoot for her beautiful job of preparing the manuscript and the organizing’
committee for all the help they gave me with proofreading. '

It is a pleasure to report that two of the conference participants, Ron Fintushel
and Ron Stern, have subsequently succeeded in greatly generalizing the results of
Donaldson while, at the same time, simplifying the arguments. They have also
applied their methods to prove a spectacular result concerning homology cobor-
disms of homology 3-spheres. In particular, they show that the Poincaré 3-sphere
has infinite order in this group. Interestingly, the key to their arguments is to
consider gauge fields with SO, in place of SU,. For low instanton numbers, the
moduli space of self-dual connections in this case is actually compact. We shall
say a bit more about this at the end of Chapter I.

vii
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1. Introduction

It is always a wonderful event in mathematics when the results of one discipline
of thought have startling and unexpected consequences in another. This was
recently the case when Simon Donaldson, arguing from deep results in gauge field
theory. proved the nonexistence of differentiable structures on certain compact
4-manifolds. The result was timely, for, in what must be considered one of the
ultimate achievements of topology, Mike Freedman had recently given a complete
classification of compact topological 4-manifolds (in the simply-connected case.)
In fact, as Freedman and Kirby first observed, this theory, together with
Donaldson’s result, implies the existence of exotic differentiable structures on R*.

The purpose of these lectures is to present Donaldson’s theorem together with
the foundational work in gauge field theory, due to Uhlenbeck, Taubes, Atiyah,
Hitchin, Singer, and others, on which the arguments are based. This first chapter
is an introduction. We begin by summarizing the current state of affairs in the
theory of 4-manifolds. We then state Donaldson’s theorem and give a brief
outline of its proof.

1. Connected surfaces. One of the classical results of topology is the classifica-
tion of compact connected surfaces (without boundary) up to diffeomorphisn
The result can be presented in the following way. Let £ be such a surface
consider closed curves y, and v, on Z. By a smail deformation we can make v,
transversal to yv,. The curves then intersect in a finite number of points. This
number, modulo 2, turns out to depend only on the homology class of v, and v, in
H\(Z; Z,). We thereby get a symmetric bilinear form p onH\(Z; Z,) called the
intersection form of Z. Poincaré duality says that this form is nondegenerate. We
define the form to be of type 11 if p(x, x) = 0 for all x; otherwise, we say it is of
type l. ‘

Note that if y € £ is an embedded curve along which orientation is reversed,

then a tubular neighborhood of y is a Mobius band and p({y).[Yy]) = 1 (see
Figure 1). Hence, u is of type I.
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FIGURE 1

THEOREM 1.1. Two compact connected surfaces are diffeomorphic if and only if
their intersection forms are abstractly equivalent. Surfaces can be separated into two
classes: type | and type 11. Those of type | are nonorientable and can be decomposed
into a connected sum of real projective planes. Those of type 11 are orientable and
can be decomposed into a connected sum of iori.

The relevant data can be organized as shown in Table 1.

nonoricntable i

Type 1 (w#0) |*% SsPR)E - #PYR)

oricntable - . . ' . s
Type Il (w, = 0) g . S=(StxshHw .. S x $Y

TaBig ]

2. Simply-connected 4-manifolds. One of the glorious achievements of modern
topology is the recent classification of compact simply-connected topological
4-manifolds. As with surfaces, the classification is stated in terms of an intersec-
tion form on the middle-dimensional homology group. Now a simply-connected
manifold M* can bz oriented. Therefore, using the orientations, the intersection
of two transversal, oriented surfaces can be counted as an integer. This gives a
sym netric bilinear form g on H,(M; Z). Poincaré duality states that this form is
unimodular. That is, if p is expressed as an (r X r)-matrix ((m;, ;) with integer
entries (with respect to some basis of the free abelian group H,(M; Z)). then
det((m,,)) = £ 1. It is.a classical result that the form u determines M up to
homotopy type.

THeOREM 2.1 (J. H. C. WHITEHEAD (1949) [Wh]). Two compact simply-connected
4-manifolds are homotopy equivalent if and only if their intersection forms are
equivalent. ‘
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(For a nice proof see [MH, p. 103}.) . . .

Recall that two symmetric bilinear forms s, and s, on lattices (:‘e... ﬁmte!y
generated free abelian groups) A, and A,, respecgively, are eguivalent .lf lhefe is
an isomorphism ¢: A, = A, such that ¢*u; = u,. Such a form on a lattice A is of
type 11 if p(x, x) = 0 (mod 2) for all x € A. Otherwise, p is of type .

There are two fundamental invariants of a symmetric bilinear form p on a
lattice A: its rank (the dimension of A @ R) and its signature (= rank — 2g,
where ¢ is the maximal dimension of a subspace of A ® R on which u is negative
definite). It is an elementary result that the signature of a form of type II must be
a multiple of 8. )

Indefinite unimodular symmetric bilinear forms are completely determined up
to equivalence by their rank and signature. The classification is as follows.

(22)  Typel: p=(l)e ---0(l)e(-1)e ---0(-1),
(2.3) Typell: p=He :--@HOE,® ---0E,,

where (1) and ( — 1) denote the two possible rank-1 forms,

21 0 0 0 0 0 0
1 21 0 0 0 0 O
01 2100 0 0
0 1 00121000
(2.4) "’(1 o)' od Ex=lo 00121 1 o
0 0 0 01 2 0 0
00 0 01 0 2 1
\0 0 0 0 0 0 1 2
Note that the nonzero off-diagonal elements of E, can be associdted to the

Dynkin diagram

|

for the exceptional Lie group E,. Note that indefiniteness forces both (1) and
( — 1) 10 appear in (2.2) and at least one H to appear in (2.3).

Definite unimodular symmetric bilinear forms are a different matter altogether.
Their study forms one of the difficult, classical fields of mathematics. To illustrate
this, we present the following astonishing table. Let N(r) denote the number of
inequivalent unimodular type I forms which are positive definite ind of rank r.

(2.5)

—

r 8 16 24 32 40
N(r) 1 2 24 > 107 > 10%

TABLE 2

(As a basic reference for the sbove facts, see M;WMM) PR
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The Whitehead Theorem 2.1 naturally suggests the question:

Which forms can appear as intersection forms on compact

(2.6) simply-connected 4-manifolds?

This is an existence question. There is also a uniqueness question.
2.7 How many inequivalent manifolds can carry the same form?

These questions can be asked for topological manifolds, where “equivalence”
means homeomorphism, or for differentiable manifolds, where “equivalence”
means diffeomorphism. For the trivial form of rank zero, Question (2.7) is the
4-dimensional Poincaré Conjecture.

It is one of the profound results of modern topology that gives a complete
answer to this question in the topological case. As with surfaces, we divide the
simply-connected 4-manifolds into two classes: those of type I which are nonspin
and have intersection forms of type I, and those of type 11 which are spin and
have intersection forms of type II. Let .4 °F denote the homeomorphism classes
of compact oriented simply-connected topological 4-manifolds of type R. Let Fr
denote the equivalence classes of unimodular symmetric bilinear forms of type R.
Taking the intersection form of a manifold gives 2 map i ,: 4 JOF — 5,

THEOREM 2.8 (M. FREEDMAN (1982) [F)). The map i,: A }°F — Sy is a
bijection. The map i\: 4 T — #, is exactly two-to-one and onto.

Thus, every unimodular form is the intersection form of a simply-connected
topological 4-manifold. This manifold is unique in the type II case, and there are
exactly two distinct manifolds in the type I case. The two possibilities differ in
that one of them has a nonzero Kirby-Siebenmann obstruction to triangulability
(see [KS)).

3. Differentiable 4-manifolds. We now examine the situation for the differentia-
ble case. It has been known for some time that not every form can appear on a
differentiable 4-manifold.

THEOREM 3.1 (ROCHLIN {Ro)). Let M be a compact simply-connected differentia-
ble &-manifold of type 11. Then signature( M) = 0 (mod 16).

Recall that the signature of a type II form is always a multiple of 8. However,
forms of type 11 with signature 8 do exist—for example, the form Eg above. Thus,
for a unimodular form g of type I1, we are led to consider the following Rochlin
invariant p(p) = } signature(s) (mod 2). Forms with nonzero Rochlin invariant
do not occur as intersection forms on compact oriented smooth 4-manifolds.

- Until recendly, little else was known about this question.
We now come to the theorem whose proof is the main focus of these lectures.

THEOREM 3.2 (S. DONALDSON (1982) [D,;]). Let M be a compact simply-
connected smooth &-manifold whose intersection form p is posmoe defmne leen pis
equioalemmmmm" e px(1)® --- 0 (1). ;
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Thus, the inpenetrable jungle of positive definite symmetric bilinear forms is
removed from the question of understanding smooth 4-manifolds. Using Freed-
man’s theorem we obtain a simple list (see Table 3) of the homeomorphism classes
of simply-connected smooth 4-manifolds which looks remarkably similar to the
one given for connected smooth 2-manifolds.

ot spin ' M=PHC)x - 2PHCHE PICin - xP(C)

Tl |y )

Type bl pin w= m M (SxSh o a8t x ShmEx - aE,
{w, = 0)

TABLE 3

In the second row there must be at least one S2 X S2 and an even number of E,
factors (by 3.1). With these restrictions it is still unknown which connected sums
of (82 x S2)ys and E,’s can be smoothed. (The classical K3 surface has three
(S% % S?y’s and two Ey’s.) ’

4. Exotica. At this moment the uniqueness of differentiable structures on
compact 4-manifolds remains an open question. However, the results discussed
above combine to give the following rather startling fact, first observed by
M. Freedman and R. Kirby. ‘ '

THEOREM 4.1. There exists an exotic R*— that is, a manifold homeomorphic to,
but not diffeomorphic 1o, R*.

The original proof of this fact used the basics of Freedman’s theorem. How-
ever, a slightly different and very pretty approach to the question is given by
using a result of F. Quinn. Recall that the complex projective plane P2(C) is
obtained by adding a “line at infinity” to C2. In particular, if §2 = PY(C) c P%(C)
is any projective line, then )

., P2(C) - S? = R*.
Let h: P}C) > PY(C) be a homeomorphism. Then the set P3(C) — h(S?) =
h(R*) is clearly homeomorphic to R* and inherits a differentiable structure as an
open subset of P %(C). '

Suppose now that M is a 4-manifold with a differentiable structure defined
wutside of some point p. o '
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DEFINITION. The singular point p is resolvable if there is a homeomorphism h:
P?(C) —» PZ(C) and a neighborhood U of p so that U — { p} is diffeomorphic to
U ~ h(S?) for some neighborhood U of h(S?) in P*(C).

Roughly speaking, the point p is resolvable if the smooth structure can be
extended across when p is replaced by a 2-sphere of self-intersection + 1. This is
very much like the “blowing-up” process in algebraic geometry.

THEOREM 4.2 (F. QUINN [Q)). Let M be a compact topological 4-manifold whose
Kirby-Siebenmann invariant is zero. Then M has a smooth structure defined outside
a finite set of points with the property that each singular point is resolvable.

Consider now a 4-manifold with XS = 0, but which, by Donaldson’s theorem,
is still not smoothable. The manifold M = E#P*C) will do. By Quinn M
carries an almost smooth structure with a finite number of resolvable singular
points py,...,p,. That is, each p, has a neighborhood UsothatU'= U - {p)is
diffeomorphic to U’ = U, - h,(S?) for some Uj, h; as above. Note that U'isa
neighborhood of infinity for some differentiable structure on R* = R 4= PpYC)
~ h;(S?). Therefore we say that the smooth manifold M -- {Pi.--..p,) has
euclidean ends. See Figure 2.

Claim. At least one of the open differentiable manifolds R* = P(C) — & (S
is not diffeomorphic to R*.

This follows immediately from any of the following assertions.

ASSERTION A. At least one of the manifolds R4 contains a compact set which
cannot be surrounded by a smoothly embedded S* (i.e., so the set is contained in
the bounded component of R4 — §?).

ASSERTION B. At least one of the R/’s does not admit an orientation-reversing
diffeomorphism.

AssErTION C. At least one of the R?'s has the property that it admits no
orientation-preserving embedding into P2(C). In fact, it admits no such embed-
ding into any smooth oriented simply-connected 4-ma.iifold with a positive
definite intersection form.

FIGURE 2
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: R; = Ple)-h(sh)
M*-{p;)

FIGURE 3

PROOF OF A. Let K, = R — U;". If each K, can be surrounded by a smoothly
embedded S* C U}, then, via the diffeomorphism, we get a smoothly embedded
§? € U;". Cutting along S* and attaching a D* gives a smoothing of M, which, by
Donaldson, is impossible, see Figure 3.

PrOOF OF B, Replacing each U, by 5} gives a smooth structure on M’ =
M#PXC)# .- #PYHC)#PYC)# --- #P?(C), where P2(C) denotes
P?(C) with the opposite orientation. (Note that the orientation of P(C) is
detected by the self-intersection number of the §2.) By Donaldson there must
appear at least one P2(C), for otherwise M’ would be smoothable with self-inter-
section form E; @ (1) @ --- @ (1), which is positive definite and nontrivial.
However, if each ﬁ; carried an orientation-reversing diffeomorphism, we could
reverse the gluing of the P2(C)-factors to make them positive, i.e., P 2(C)-factors.
As noted, this is not possible, O ‘

PROOF OF C. Suppose there exists an orientation-preserving smooth embedding
i R} < PXC). If we remove i (K;) = i,([R4 - ) from P*(C), we obtain a
smooth manifold, homeomorphic to P3(C) — {pt), whose end is oriented diffeo-
morphic to U’ = U/". We can then attach P*(C) ~ i;(K,) smoothly to M — { p,}.
If this works for all j, we get a smooth version of E#PC)# --- #P¥C) as
before. See Figured4. D

R. Gompf has shown that there exists a smooth structure on M ~ { p} (where
M = E#P?*(C)) so that the singular point p is resolvable. By the above remarks
we thereby have a euclidean end with all of the above character traits.

THEOREM 4.3 (R. GOMPF [G]). There exists an exotic R*, denoted R%, with the
properties:
(i) R} contains a compact set which cannol be surrounded by a smoothly
embedded 3-sphere.
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(ii) R ¢ admits no orientation-reversing diffeomorphisms.

(iii) R & has no oriented smooth embedding into P*(C) or P(C)# --- #P*(C)
(for any number of factors). "

(iv) R has an end which appears on a smoothing of Egit P ‘(C)

This creature R{ can be used to generate further examples. There is a simple
connected sum operation for open manifolds given by building an open bridge
between them. More rigorously, one takes properly embedded arcs A ;: [0, o0) — M,
for j = 1,2. Each arc has a tubular neighborhood U; which is dlffeomorphnc to
0,1) X R%. Auach (0,3) X R® 10 M,LIM, by glumg (0,1) xR?® to U, and
(2,3) X R? 10 U,. We shall denote the resulting connected sum by M,4M,. See

Figure 5.
VI, .

FIGURE 4
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c T T

Caution. It is not clear that this construction is independent of the choice of
arcs and attaching maps. Indeed, the attaching maps should be made *“canoni-
cally” in thin regular neighborhoods of the curves (using the linearization of the
manifold along the curve in the spirit of the classical case.) It is left as an exercise
to the reader to verify, via isotopy of curves and uniqueness of regular neighbor-
hoods, that the operation { is well defined.

By building the above bridge in a symmetric fashion (like “doubling”), we can
take a connected sum

RY = Ris(-R})

which does have an orientation-reversing diffeomorphism. Since R¢ contains
+R$, it cannot be embedded into any smooth simply-connected 4-manifolds
with either a positive or negative definite intersection form (by Theorem 4.3). In
particular, R is exotic and not diffeomorphic to R .

These two spaces can be used for many interesting constructions. Let R4. be
any exotic R*. By embedding two arcs in R% as above and pasting on copies of
(0,3) X R? along (0,1) X R, we can create an R4 with two “trivialized project-
ing ends.” (See Figure 6.) We can now concatenate these fellows in infinite arrays.
For example, let w = --- gsggs - -- be any doubly infinite word in two letters 4
and 5. Then we can join together the blocks R % and R to give a manifold

. PP
R, = - RHRERMRMRY - ...

Here, b is the canonical operation on the trivialized projecting ends. These
creatures are all exotic since they contain R$. as an open subset, It is interesting to
speculate how many distinct R*’s can be constructed this way.

Observe now that these basic building blocks ﬁ"E can be arranged into the
pattern of any (countable) tree. A good one to use here is fls, which can be

1intin
ittt

FIGURE 6
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assumed 10 have a reflection symmetry that interchanges the ends_. Let T he a
countable tree and build an exotic R* by joining together copies of R§ as though
they were the edges of the tree (see Figure 7). The resulting R4 will contain a
group of diffeomorphisms #7(7) C Diff(R%) isomorphic to the group of auto-
morphisms of T such that for any compact set K C R7, the set (g€ .d(T: )
g(K) N K} is finite. It seems possible that no two elements in /(T are isotopic,
so that &/(T') is a subgroup of the component group Diff(R%)/Diff °(R4.). (Here
Diff (R %) denotes the connected component of the identity.)

Of course, highly symmetric trees do exist. A good example is the universal
cover of S' vV - .- v S' (k times), whose automorphism group contains the free
group on & generators and the symmetric group on 24 elements.

It should be noted that 4 is the only dimension in which euclidean space carries
exotic differentiable structures (see [KS]). Thus, for any exotic R4 we have a
diffeomorphism R4 X R = R’.

S. An introduction to Donaldson’s proof. Many nontrivial results in the topology
of 2-manifolds are proved by using complex analysis. A riemannian metric is
introduced on the manifold, which, in turn, determines a conformal structure.
Using this conformal structure, one then does analysis. A good example is the
following. Suppose X is a compact simply-connected surface. Then appropriate
use of the Riemann-Roch theorem asserts that there is a meromorphic function
on Z of degree 1. That is, there exists a holomorphic map f: £ — $2 of degree 1.
From our knowledge of the singularities of holomorphic maps (they are branched
coverings), we conclude that fis a diffeomorphism.

Donaldson’s argument is very much in this spirit. Given a compact simply-
connected 4-manifold M, we introduce on M a riemannian metric. We then
proceed to study a global system of first-order differential equations, much like
the Cauchy~-Riemann equations. This system depends only on the conformal
structure determined by the metric. A detailed understanding of the solutions will
have tremendous implications for the global topology of M.

2 3

=

TR

FiGuRe 7
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In doing complex analysis on ~ compact (Riemann) surface 2, one is led
inevitably to study the complex line bundles on 2. Let L (Z) denote the
topological equivalence classes of such bundles. Then there are bijections

(5.1) Le(2) L2 s1) b ny (3 2) = 2,

where [Z, S?] denotes homotopy classes of maps from = to $2. The isomorphism
Lc(2) = H(Z,2) is given by taking the Euler class (or, equivalently, the first
Chern class). The fundamental line bundle over S2, from which all others are
induced, is the spinor bundle, whose principal S'-bundle is just the Hopf
fibration S* — S2 It can also be viewed as the tautological line bundle over
PYC) =S

To study 4-manifolds we are led, in strict analogy, to study quaternion line
bundles. Let L, ( M) denote the topological equivalence classes of quaternion line
bundies over a compact 4-manifold M. Then there are analogous bijections

(5.2) La(M)e[M, s NS h (M 2) = 2.

The map L (M) = HYM; 2) is again given by the Euler class (or, equivalently,
by ¢, or —p,/2). The fundamental line bundle over S* is the spinor bundle,
whose associated principal S>-bundle is the Hopf fibration S7 — S*. It can also
be viewed as the tautological line bundle over P}(H) = $*.

Let M be a compact simply-connected oriented smooth 4-manifold and con-
sider the fundamental quaternion line bundie E - M with Euler class ~1.
Introduce a riemannian metric on M and a bundle metric in E which is
H-compatible, i.e., which is preserved under scalar multiplication by unit quatern-
ions. We now consider the space ¥ of H-connections on E which preserve the
metric. Each connection v € €has an associated curvarure tensor R¥ which is un
exterior 2-form with values in the bundle Hom,(E, E). The riemannian metric
on M gives a linear involution on 2-forms called the Hodge »-operator,
*: A? = A2 It depends only on the conformal class of the metric. The 2-forms
decompose into +1 and —1 eigenspaces under . We shall look for connections
Vv which satisfy the equations ,

(5.3) +RY = RV,

Such connections are called self-dual. Equations (5.3) are like the Cauchy-
Riemann equations. They imply that R is “harmonic.” They also imply that v
absolutely minimizes the Yang-Mills action

(5.4) su(v)=if jr°I

(which is also conformally invariant).

Let 4 denote the set of equivalence classes of self-dual connections on E. The
following two results are proved by Donaldson, but rely heavily, as we shall see,
on work of Taubes, Uhlenbeck, and Atiyah-Hitchin-Singer. In both theorems we
assume that the intersection form of M is ( positive) definite.



