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PREFACE

This book contains 42 invited lectures and progress reports
presented at the XII Yugoslav Summer School and International Symposium
on Physics of Tonized Gases (XII SPIG *84), held in 3Fibenik, Yugoslavia,
from September 3 to September 7, 1984. The invited programme covers all
scientific topics of the Conference, concentrated on the Plasma Physics
and Physics of Gas Discharges and on the supporting fields of Physics of
Atomic Collisions and Physics of Particle Interaction with Solids.

The editors express their particular gratitude to the lecturers
who kindly submitted their manuseripts in their final form for publica-
tion.

We beleive that this volume, containing contributions of many re—
nowm lecturers, will be a valuable source of information in the field both

for graduate students and experts.

Fditors
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WHAT FORMULAS ARE GOOD FOR REPRESENTING DIPOLE AND GENERALIZED
OSCILLATOR-STRENGTH SPECTRA?

Mitio Inokuti and Michael A, Dillon

Argonne National Laboratory, Argommne, Illinois 60439, U.S.A.

Introduction

The dipole oscillator-strength distribution df/de for a single
continuum excitation of an atom or molecule is a function of the kinetic
energy € of an outgoing electron. The distribution describes many
optical phenomena such as absorption, refraction, and reflection; in
particular, df/de is equal to the cross section for lonization by a
photon with energy € + I, apart from a universal constant, where I is
the ionization threshold for the relevant shell.l Furthermore, df/de
governs. the ionizatlon by glancing collisionms of fast charged
particles.2 Recent years have seen considerable accumulation3’4 of
experimental data on df/de. Those data are indeed valuable for many
applications in radiation physics, plasma physics, atmospheric physics,
and astrophysics. In most of these applications, one needs a comprehen-
gsive set of data, i.e., numerical values of df/de over a wide range of
e, say, from several eV to many keV; most often, one needs data at all e
at which df/de is appreciable. However, it is unrealistic to expect for
measurements to cover all the € values. Comsequently, one must find a
method for systematizing the data so that one can extrapolate or inter—
polate them dependably.

It 1s from the above consideration that we started a series of
5-8

studies aimed at answering the question in the title. The present

lecture is in effect a summary of those studies.

*Work performed under the auspices of the U.S. Department of Energy.



Part 1 treats analytic properties of df/de considered as a function

of €. To begin with, one distinguishes?

two factors that together
constitute df/de. The first factor is defined in terms of the dipole

matrix element with respect to the final-state wavefunction whose

amplitude near the origin is independent of e. This factor is analytic

at all finite €, except for a universal singularity5 at € = ~I, where 1
is the relevant threshold ionization energy. The other factor stems

from the normalization of the final-state wavefunction on the energy

6

scale. This factor® plays important roles in at least three respects.
First, when the phase shift rapidly varies with real € (a situation that
we shall loosely call a resonance), the normalization factor exhibits a
maximum, and its local behavior may be approximated by a Loremntzian
form. Second, the same factor 1is crucial for consideration of the high-
¢ asymptotic behavior. Finally, the analytic continuation of the same
factor to negative € naturally leads to properties of bound states
including the discrete oscillator-strength spectrum. Through several
examples, we shall illustrate the use of all the analytic properties in
the practical fitting of the df/de data.

Part 2 deals with the generalized oscillator strength, which is the
only non-trivial factor in the differential cross section for the
inelastic scattering of a charged particle by an atom or molecule,
evaluated within the first Born approximation.2 The distribution
df(K,c)/de of the generalized oscillator strength for ionization is a

function of both € and momentum transfer K. The K~dependence of this

function at a fixed € is best elucidated through an analysis from the
point of view of the theory of functions of a complex variable (which

may be either K or Kz). This point of view was first advanced by

10

Lassettre, who specifically treated the generalized oscillator



strength for the excitation to a bound excited state. Our recent work8
is an extension of the work of Lassettre. Results of our analysis lead
to practical methods for fitting the data specifically for 1onization.

Part 1. Dipole Oscillator—Strength Distribution

1l.1. The reduced matrix element and the normalization factor

The essential ingredient of df/de is the single-electron radial

dipole matrix element. For a transition from an initial bound orbital

e (r) to a final continuum orbital r 'P_,(r) of an atom, the
nO£O ek

radial matrix element Rz(e) is defined by

ow©

R,(e) = [ P_,(x)r P_  (r)dr, (1)
L 0 el nOLO
where % = 20 + 1. It is convenient to distinguish two causes for the e-

dependence of Psl(r)’ and hence of Rz(e). First, Pez(r) obeys the
Schrodinger equation

[a%/dc? - 2v(r) - (4 + D2 + 2elp_ () = 0, (2)
where and in what follows we use the atomic-—unit system (in which e = K
=m =1). Suppose that ?Ez(r) is the solution of Eq. {2) whose
amplitude near the origin is independent of e, i.e.,

= _ A+l -
Pel(r) =r near r = 0. (3)
However, Pcl(r) appropriate for Eq. (1) must satisfy the normalization

condition
«©

IO Pez(r) Pe,l(r)dr = §(e - '), (4)

and it differs from ﬁeg(r) by a factor Cﬂ(e). That is to say,

Pel(r) = CE(E) Psl(r)' (5)
Thus we may write

R (e) = € (e) Ry(e), (6)
where ﬁi(e) is the matrix element with respect to ﬁeg(r), and it may be

called the reduced matrix element. For real ¢ (i.e., for physical
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values of €), the functions Pel(r) and §e£(r) may be taken as real,
without loss of gemerality. Therefore, Cz(e), ﬁl(s), and Rl(e) are all
real-valued for real €.

Analytic properties of ﬁg(e), now considered as a function of

complex variable €, is simple.5

It is analytic for all finite € except
at a universal singularity at € = -I. The cause for this singularity is
elementary, First, consider contributions to ﬁg(ﬁ) from finite r. From
the general theory of differgntial equations, one knows that ?2(6) is
analytic for all finite e, because € appears in Eq. (2) as a constant
coefficient. Therefore, the contribution to ER(E) from finite r is a
function analytic for all finite e. Next, consider the contribution

to ﬁz(e) from large r at which the asymptotic behavior of the wavefunc—
tions prevails. There the dominant factor of P“ozgr) is exp[—(ZI)l/zr],
and the dominant factor of §51(r) is exp(tikr). The product of the two
exponentials gives exp[+ik - (21)1/2]r. Thus ﬁl(s) diverges at +ik =

172y 5 4,

(21)1/2, i.e., at & = -I, (More generally for Re{xik - (2I)
the integral diverges, but its analytic continuation is definable
there, Thus EZ(E) is singular at the point #ik = (21)1/2 only.)
Although the location of the singularity is physically inaccessible, it
is nevertheless important to recognize its presence. In other words, it
is appropriate to represent Eeﬁ(e) in terms of a variable that
incorporates the singularity.

An example of such a variable is

g =€/(e + 1), 7)
To see its significance, one may view Eq. (7) as a conformal mapping
from the complex ¢ plane onto the complex g plane. The half plane on
the right of the vertical line Re ¢ = ~I/2 (the shaded region in Fig. 1)

is mapped onto the interior of the unit circle. The singularity e = ~I

is mapped to g * «. Physical data for the oscillator-strength pertain



to real positive € (forming the continuum), and to discrete negative
values E1r €5 ens of ¢ (forming the discrete spectrum); we may call the

set of all those ¢ values the physical domain. By Eq. (7), the physical

domain (indicated by the heavy line and dots in Fig. 1) is mapped onto a
segment of the real axis on the g plane, and this segment is entirely
within the interior of the unit circle. Because ﬁl(s) has no
singularity other than ¢ = -I, it is analytic in g certainly within the
unit circle, and thus may be expressed by an absolutely convergent
series in powers of g. In many examples,5_7 the use of a polynomial in

g of a modest degree is sufficient for effective representation of data

on df/de.
€ Plane g Plane

Img

Fig. l. Conformal mapping g = €/(e + I}.

The quantity CE(E) may be called the normalization factor or the
enhancement factor,9 and is closely related to what the solid-state
theorist calls the density of states. General properties of Cl(e) have
been studied both analytically and numerically.6 When the phase
shift 61(6) changes rapidly with €, Cz(e) shows a maximum. We may call
this situation a resonance; in this case, the fitting of df/de requires
6

some parameterization of Cz(s), the use of a new variable, or both.

Further discussion on this topics is seen in Section 1.3.



