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PREFACE

A preface is not, in my book, an introduction. Somewhere,
readers already acquainted with the subject need to be told suc-
cinctly what a book covers and how. The book itself gives this
information the long way, explaining concepts and justifying
assertions. The preface gives it the short way, presupposing some
command of the technical terms and concepts.

As explained in the Introduction, the book assumes no prior
knowledge of set theory but some of logic. Chapter I, entitled
“Logic,” builds upon this prerequisite. Mainly what it builds is
what I have elsewhere called the virtual theory of classes and
relations: a partial counterfeit of set theory fashioned purely of
logic. This serves later chapters in two ways. For one thing, the
virtual theory affords a useful contrast with the later, real theory.
The contrast helps to bring out what the genuine assuming of
classes amounts to; what power real classes confer that the
counterfeits do not. For another thing, the virtual theory even-
tually gets merged with the real theory in such a way as to pro-
duce a combination which, though not strictly more powerful
than the real theory alone would be, is smoother in its running.

This departure last mentioned is one of several that are meant
for the theoretician’s eye. But at the same time the book is
meant to provide a general introduction to staple topics of ab-
stract set theory, and, in the end, a somewhat organized view of
the best-known axiomatizations of the subject. Paradoxically,
the very novelties of the approach are in part devices for neutraliz-
ing idiosyncrasy.
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Because the axiomatic systems of set theory in the literature are
largely incompatible with one another and no one of them clearly
deserves to be singled out as standard, it seems prudent to teach
a panorama of alternatives. This can encourage research that
may some day issue in a set theory that is clearly best. But the
writer who would pursue this liberal policy has his problems.
_ He cannot very well begin by offering the panoramic view, for
the beginning reader will appreciate neither the material that the
various systems are meant to organize nor the considerations
that could favor one system in any respect over another. Better
to begin by orienting the reader with a preliminary informal
survey of the subject matter. But here again there is trouble.
If such a survey is to get beyond trivialities, it must resort to
serious and sophisticated reasoning such as could quickly veer
into the antinomies and so discredit itself if not shunted off them
in one of two ways: by abandoning the informal approach in
favor of the axiomatic after all, or just by slyly diverting the
reader’s attention from dangerous questions until the informal
orientation is accomplished. The latter course calls for artistry of
a kind that is distasteful to a science teacher, and anyway it is
powerless with readers who hear about the antinomies from some-
one else. Once they have heard about them, they can no longer
submit to the discipline of complex informal arguments in abstract
set theory; for they can no longer tell which intuitive arguments
count. It is not for nothing, after all, that set theorists resort to
the axiomatic method. Imtuition here is bankrupt, and to keep
the reader innocent of this fact through half a book is a sorry
business even when it can be done.

In this book I handle the problem by hewing a formal line
from the outset, but keeping my axioms weak and reasonable and
thus nearly neutral. I postpone as best I can the topics that
depend on stronger axioms; and, when these topics have to be
faced, I still postpone the stronger axioms by incorporating
necessary assumptions rather as explicit hypotheses into the theo-
rems that require them. In this way I manage to introduce the
reader at some length to the substance of set theory without any
grave breach of neutrality, and yet also without resorting to
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studied informality or artificial protraction of innocence. After
ten such chapters I find myself in a position to present and com-
pare, in the four concluding chapters, a multiplicity of mutually
incompatible axiomatizations of the material with which the
reader has been familiarized.

More specifically, the weak axioms that thus govern the main
body of the work are such as to imply the existence of none but
finite classes. Moreover, they do not even postulate any infinite
classes hypothetically. To see what I mean by this, consider,
in contrast to my axioms, a pair of axioms providing for the
existence of the null class A and of ¢ u {y} for all z and y. These
axioms, like mine, imply the existence only of finite classes.
But, unlike mine, these provide also that if an infinite class x
exists then so does the further infinite class z v {y} for any y.

My axioms do provide for the existence of all finite classes of
whatever things there are. They are consequently not altogether
neutral toward the systems in the literature. They conflict with
those systems, such as von Neumann’s, in which some classes—
“ultimate” classes, I call thern—are counted incapable of being
members of classes at all. Though one such system was that of
my own Mathematical Logic, in the present book I defend the
finite classes against the ultimate classes.

My axioms of finite classes are enough, it turns out, for the
arithmetic of the natural numbers. Usually the definition of
natural number involves infinite classes. Natural numbers are
the common members of all classes that contain 0 (somehow
defined) and are closed with respect to the successor operation
(somehow defined); and any such class is infinite. The law of
mathematical induction, based on this definition, can be proved
only by assuming infinite classes. But I get by with finite classes
by inverting the definition of natural number, thus: z is a natural
number if 0 is a common member of all classes that contain z
and are closed with respect to predecessor.

Classically the definition of natural number is a special case of
that of Frege’s ancestral (Dedekind’s chain); a natural number is
what bears the ancestral of the successor relation to 0. Mathe-
matical induction is a special case of ancestral induction. Now
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to avoid the need of infinite classes in the special case of natural
number, by inversion as above, is all very well; but what of the
general case? I answer this question by deriving the general
from the special: defining the nth iterate of a relation r, for vari-
able ‘n’, with the help of number theory and then defining the
ancestral of 7 in effect as the union of its iterates. Through this
channel the general law of ancestral deduction is derived from
what is usually looked upon as its special case, mathematical
induction, and there is still no need of infinite classes. Incidentally,
the notion of the iterate expedites the definition and treatment of
arithmetical sum, product, and power. These developments are
largely a revival of Dedekind’s ideas.

Through these and subsequent developments an illusion is
maintained of opulence unaccounted for by the axioms. The trick
is the merging of the virtual theory with the real. The notation
‘{x: Fz}’ of class abstraction is introduced by contextual defini-
tion in such a way that much use can be made of it even if the
class does not exist; just its substitution for variables requires
existence, and even this sanction is lightened somewhat by a
use of schematic letters that does not require existence. We find
we can enjoy a good deal of the benefit of a class without its
existing either as a set or as an ultimate class.

After the natural numbers come the ratios and other real num-
bers. The reals are construed by essentially the Dedekind cut as
usual, but the details of the development are so adjusted that the
ratios turn out identical with the rational reals, not just isomor-
phic to them, and the reals become classes of natural numbers,
not relations or classes of relations of them. The classical laws of
real numbers, in particular that of the least bound, are found of
course to depend on hypotheses of existence of infinite classes.

Then come the ordinal numbers, which I take in von Neumann’s
sense. My treatment of the natural numbers, earlier, is at variance
with this course, for I take them rather in Zermelo’s way. My
reason is that I seem thus to be able to get by for a while with
simpler existence axioms. In the general theory of ordinals we
are bound to face serious existence assumptions, but we can pre-
serve economy of assumption at the level of natural-number
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theory; and so I let the natural numbers and the ordinals go
their separate ways.

I take comfort in the thought that it is just as well that students
familiarize themselves with both Zermelo’s and von Neumann’s
versions of the natural numbers. Still I would have been pleased
to find that I could reap all advantages of the Zermelo version
by adhering to von Neumann’s from the start; and I appreciate
the help of my student Kenneth Brown in exploring this alterna-
tive. To have rested with his best results, and so adhered first and
last to von Neumann numbers, would have been nearly as good
as the choice I made.

Transfinite recursion for me, as for von Neumann and Bernays,
‘consists in specifying a transfinite sequence by specifying each
thing in the sequence as a function of the preceding segment of
the sequence. This matter is formalized in Chapter VIII, and put
to use in defining the arithmetical operations on ordinals. It is
put to use also in defining the enumeration of an arbitrary well-
ordering. From the existence of enumerations, in turn, the com-
parability of well-orderings is deduced. These developments
depend on existence assumptions which are written into the theo-
rems as hypotheses. The same is true of the developments in the
next two chapters, which are devoted to the Schroder-Bernstein
theorem, the infinite cardinals, and the main equivalents of the
axiom of choice.

The four concluding chapters are given over to the description
and comparison of various systems of axiomatic set theory:
Russell’s theory of types, Zermelo’s system, von Neumann’s, two
of mine, and, in a sketchy way, some recent developments. Logical
connections are traced among them; for example, the theory of
types is transformed essertially into Zermelo’s system by translat-
ing it into general variables and taking the types as cumulative.
The systems generally are given an unfamiliar cast by continuing
to exploit the vestiges of the virtual theory of classes,

These four concluding chapters embody the origin of the book.
One of my short lecture courses at Oxford, when I was there as
George Eastman Visiting Professor in 1953~54, was a comparison
of axiomatic set theories; and though I had dealt with the topic
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repeatedly at Harvard, it was the formulation at Oxford that got
me to envisaging a little book. Then, for five years after Oxford,
the project remained in abeyance while I finished a book on other
matters. In 1959 I returned to this one, and that summer I gave
a resumé of the material in some lectures at Tokyo. The book
bade fair to be finished in a year, as a short book comprising the
comparison of set theories along with some minimum preliminary
chapters for orientation in the subject matter. But in the writing
I got ideas that caused the preliminary chapters to run to five-
sevenths of the book, and the book to take two additional years.

Since October the manuscript has had the inestimable benefit of
critical readings by Professors Hao Wang, Burton S. Dreben, and
John van Heijenoort. Their wise suggestions have led me to
extend my coverage in some places, to deepen my analysis in
others, to clear up some obscurities of exposition, to correct and
supplement various of the historical notes, and, thanks to Wang
particularly, to give a sounder interpretation of some papers.
And all three readers have helped me in the asymptotic labor of
spotting clerical errors.

I have been indebted also to Professors Dreben and John R.
Myhill for helpful earlier remarks, and to current pupils for sundry
details that will be attributed in footnotes. For defraying the costs
of typing and other assistance I am grateful to the Harvard
Foundation and the National Science Foundation (Grant
GP-228).

W. V. Q.

Boston, January 1963
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INTRODUCTION

Set theory is the mathematics of classes. Sets are classes. The
notion of class is so fundamental to thought that we cannot hope
to define it in more fundamental terms. We can say that a class
is any aggregate, any collection, any combination of objects of
any sort; if this helps, well and good. But even this will be less
help than hindrance unless we keep clearly in mind that the ag-
gregating or collecting or combining here is to connote no actual
displacement of the objects, and further that the aggregation or
collection or combination of say seven given pairs of shoes is not
to be identified with the aggregation or collection or combination
of those fourteen shoes, nor with that of the twenty-cight soles
and uppers. In short, a class may be thought of as an aggregate or
collection or combination of objects just so long as ‘aggregate’
or ‘collection’ or ‘combination’ is understood strictly in the sense
of ‘class’.

We can be more articulate on the function of the notion of
class. Imagine a sentence about something. Put a blank or vari-
able where the thing is referred to. You have no longer a sentence
about that particular thing, but an opg mag, so called, that

Now the notion of class is suchyth i BASON to be, in

addition to the various thing is true,
also a further thing which is th things

and no others as member. It # by he open
sentence. ¢
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Much the same characterization would serve to characterize
the notion of attribute; for the notion of attribute is such that
there is supposed to be, in addition to the various things of which
a given open sentence is true, a further thing which is an astribute
of each of those things and of no others. It, with apologies to
McGuffey, is the artribute that the open sentence atsributes.
But the difference, the only intelligible difference, between class
and attribute emerges when to the above characterization of the
notion of class we adjoin this needed supplement: classes are
identical when their members are identical. This, the law of
extensionality, is not considered to extend to attributes. If some-
one views attributes as identical always when they are attributes
of the same things, he should be viewed as talking rather of classes.
I deplore the notion of attribute, partly because of vagueness of
the circumstances under which the attributes attributed by two
open sentences may be identified.*

My characterization of the notion of class is not definitive.
1 was describing the function of the notion of class, not defining
class. The description is incomplete in that a class is not meant to
require, for its existence, that there be an open sentence to deter-
mine it. Of course, if we can specify the class at all, we can write
an open sentence that determines it; the open sentence ‘z € o’ will
do, where ‘¢’ means ‘is a member of” and « is the class. But the
catch is that there is in the notion of class no presumption that
each class is specifiable. In fact there is an implicit presumption
to the contrary, if we accept the classical body of theory that comes
down from Cantor. For it is there proved that there can be no
systematic way of assigning a different positive integer to every
class of positive integers, whereas there is a systematic way (see
§30) of assigning a different positive integer to every open sentence
or other expression of any given language.

What my characterization of classes as determined by open
sentences brings out is just'the immediate utility and motivation
of the notion of class, then, not its full range of reference. In
fact the situation is yet worse: not only do classes outrun open

! In what I call referential opacity there is further cause for deploring the
potion of attribute. On both complaints see Word and Object, pp. 209f.
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sentences, but also conversely. An open sentence can be true
of some things and false of others and yet fail, after all, to deter-
mine any class at all. Thus take the open sentence ‘z ¢ z°, which
is true of an object 2 if and only if z is not a class that is a member
of itself. If this open sentence determined a class y at all, we should
have, for all z, x € y if and only if z ¢ z; but then in particular
y €y if and only if y ¢ y, which is a contradiction. Such is
Russell’s paradox.2 So, on the heels of finding that not all
classes are determined by open sentences, we are now forced to
recognize that not all open sentences determine classes. (These
ills, by the way, would descend no less upon attributes.) A major
concern in set theory is to decide, then, what open sentences to
view as determining classes; or, if I may venture the realistic
idiom, what classes there are. This is a question from which, in
the course of this book, we shall never stray far.

The word ‘set’ recurred two sentences ago, for the first time
since we took leave of it in the second sentence of this Introduc-
tion. It will be as well now to reckon a bit further with it. After
all, it is on the cover.

Basically ‘set’ is simply a synonym of ‘class’ that happens to
have more currency than ‘class’ in mathematical contexts. But
this exces$ terminology is often used also to mark a technical
distinction. As will emerge, there are advantages (and dis-
advantages) in holding with von Neumann and perhaps Cantor
that not all classes are capable of being members of classes, In
theories that hold this, the excess vocabulary has come in handy
for marking the distinction; classes capable of being members are
called sets. The others have lamely been called ‘proper classes’,
on the analogy of ‘Boston proper’ or ‘proper part’; I prefer to
call them ultimare classes, in allusion to their not being members
in turn of further classes.

We can know this technical sense of ‘set’ and still use the terms
‘set’ and ‘class’ almost interchangeably. For the distinction
emerges only in systems that admit ultimate classes, and even in

2 Russell discovered it in 1901. He did not publish it until 1903, but mean-
while he discussed it in correspondence with Frege. The letters are to appear
in van Heijenoort.
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such systems the classes we have to do with tend to be sets rather
than ultimate classes until we get pretty far out. And, as a name
for the whole discipline, ‘set theory’ remains as defensible as
‘class theory’ even granted ultimate classes; for any properly
general treatment of the sets would be bound anyway to relate
them incidentally to the ultimate classes if such there be, thus
covering the whole ground still. My own tendency will be to
favor the word ‘class’ where ‘class” or ‘set’ would do, except for
calling the subject set theory. This is the usual phrase for the
subject, and I should not like to seem to think that I was treating
of something else.

In Chapter I we shall see how set theory can in part be simulated
by purely notational convention, so that the appearance of talk-
ing of sets (or classes), and the utility of talking of them, are to
some degree enjoyed without really talking of anything of the
kind. This technique I call the “virtual theory of classes.” When
we move beyond it in later chapters to the real thing, we shall
still retain this simulation technique as an auxiliary; for in a
superficial way it will continue to offer some of the convenience
of stronger existence assumptions that we actually make. But a
difference between class and set is not to be sought in this, for the
simulation is not a case of using things of some other sort to
simulate sets; it is a case of seeming to talk of sets (or classes)
when really talking neither of them nor of anything in their
stead.

I defined set theory as the mathematical theory of classes, and
went on to describe the notion of class. Yet I thereby gave no
inkling of what prompts set theory. This is best done rather by
quoting the opening sentence of Zermelo’s paper of 1908: “Set
theory is that branch of mathematics whose task is to investigate
mathematically the fundamental notions of number, of order,
and of function in their original simplicity, and to develop thereby
the logical foundations of all arithmetic and analysis.””3

Because of Russell’s paradox and other antinomies, much of
set theory has to be pursued more self-consciously than many

3 The English is Bauer-Mengelberg’s, from van Heijenoort’s Source Book.
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other parts of mathematics. The natural attitude on the question
what classes exist is that any open sentence determines a class.
Since this is discredited, we have to be deliberate about our axioms
of class existence and explicit about our reasoning from them;
intuition is not in general to be trusted here. Moreover, since the
known axiom systems for the purpose present a variety of in-
teresting alternatives, none of them conclusive, it would be im-
prudent at the present day to immerse ourselves in just one
system to the point of retraining our intuition to it. The result
is that the logical machinery is more in evidence in this part of
mathematics than in most.

But in this respect the literature on set theory divides con-
spicuously into two parts. The part that concerns itself maianly
with foundations of analysis gets on with much the same measure
of informality as other parts of mathematics. Here the sets con-
cerned are primarily sets of real numbers, or of points, and sets
of such sets and so on. Here the antinomies do not threaten, for
questions like ‘z € 2 do not come up.

It is rather in what Fraenkel has called abstract set theory, as
against point-set theory, that we have so particularly to call our
shots. A book in this branch typically takes up, in order, the
following topics. First there are the general assumptions of the
existence of classes, and other general laws concerning them.
Then there is the derivation of a theory of relations from this
basis, and more particularly a theory of functions. Then the
integers are defined, and the ratios, and the real numbers, and the
arithmetical laws are derived that govern them. Finally one gets
on to infinite numbers: the theory of the relative sizes of infinite
classes and the relative lengths of infinite orderings. These
latter matters are the business of set theory at its most character-
istic. They are the discovery or creation of Cantor, and thus
virtually coeval with set theory itself.

This is a book on abstract set theory, and it falls generally into
the above outline. It thus belongs to the branch of set-theoretic
literature that has to be rather explicit about its logic. And this
requirement is somewhat heightened, in this book, by two special
circumstances. One is that in the last four chapters I shall com-



