


Proceedings
- of the

STEKLOV INSTITUTE
OF MATHEMATICS

1984, ISSUE 4

Topology

A Collection of Papers

Edited by
P. S. Aleksandrov

" Travisiation &f
TPY A
apnena Jicsismn

MATEMATHUYECKOI'Q MHCTUTYTA
wee B. A. CTEKJIOBA

Tom 154 (1983)




AKAJEMMSI HAYK

COK03A COBETCKHMX COUMAJIMCTUYECKHUX PECIYBJIMK

TPY Abl

opacua Jlennna

MATEMATHUYECKOI'O UHCTUTYTA
wvenn B. A. CTEKJIOBA

CLIV

CBOPHHK PABOT
non penaxuHen
Penxonneruss c60OpHHKA:

akapemux [II, C. AJIEKCAHIOPOB (P. S. Aleksandrov)
AOKTOP ¢M3INKO-MaTeMaTHIYECKHX HayK K. A. MAJILIEB (A. A. Mal'tsev)
OOKTOP ¢HIHKO-MaTeMaTHYeCKHWX Hayk E. B, WENHH (E. V. Tsepin)
KaHOUINAT ¢H3MKO-MaTEeMaTHYCCKHX Hayk M. A. WTAHBKO (M. A. Shtan'ko)

OTBeTCTBEHHHN penakTop TpyaoB MUAH (Editor-in-Chief)
akanemux C. M. HUKOJBCKHUA (S. M. Nikol'skii)
3aMecTHTeNb OTBETCTBEHHOro penakropa (Assistant to the editor~in-chief)
AOKTOp ¢H3IHKO-MAaTEeMaTUYEeCKHX Hayk E, A. BOJIKOB (E. A. Volkov)

uamarensLcTso "Hayka"

MOCKBA 1983

Library of Congress Cataloging in Publication Data

Topologifa. English. :
Topology : a collection of papers.

(Proceedings of the Steklov Institute of Mathematics,
0081-5438 ; 1984, issue 4)

Translation of: Topologiia.

Includes bibliographies.

1. Topology--Addresses, essays, lectures.
I. Aleksandrov, P. S. (Pavel Sergeevich), 1896-
ITI. Title. III. Series: Trudy Ordena Lenina
Matematicheskogo instituta imeni V.A. Steklova.
English ; 1984, issue 4.
QA1.A413 1984, issue 4 [QA611.15] 510 s [514] 85-7326
ISBN 0-8218-3086-4

April 1985
Translation authorized by the All-Union Agency for Author’s Rights, Moscow

Information on Copying and Reprinting can be found at the back of this journal.

The paper used in this journal is acid-free and falls within the guidelines
established to ensure permanence and durability.

Copyright ©1985. by the Amcrican Mathematical Society




ABSTRACT. The papers comprising this collection are devoted to various present-day questions of
algebraic and general topology, and their applications to different domains of mathematics.
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FROM THE EDITOR

The International Topology Conference organized by the Academy of Sciences of
the USSR was held at the Steklov Institute of Mathematics and Moscow State
University {rom June 25 to 29, 1979.

About 170 mathematicians took part in the conference, including about 70 from
abroad, and all the main directions in comtemporary topology and its applications
were represented.

The organizing committee of the conference asked the authors of the most
interesting reports to write papers based on these reports, with a view to publishing
them later in a Soviet journal. Part of these articles have already been published (see
Russian Math. Surveys 34 (1979), no. 6, and 35 (1980), no. 3; detailed information
on the conference is also contained there), and part make up the present issue.

Below I reproduce (with minimal changes) the speech I gave at the opening of the
conference (published in the cited 1979 number of Russian Math. Surveys).

The very first International Topology Conference took place in Moscow in August
1935. This was indeed a brilliant gathering of many of the best topologists in the
world.

The main purpose of the 1935 conference was to represent topology as a whole, as
a unified mathematical discipline, and to promote an active interpenetration of the
two main directions of this discipline: the combinatorial-algebraic direction and the
set-theoretic direction. The periods in which this interpenetration was especially
intensive, the periods of synthesis of algebraic and set-theoretic topology, are in my
opinion among the most productive in the development of our area of mathematics.
It is to these periods that I want to devote a few words, only now and then touching
lightly on certain other important moments in the development of topology.

The first of these periods is that of the immortal work of Brouwer in topology,
mainly between 1909 and 1913. His striking geometric intuition, combined with his
powerful set-theoretic thinking and set-theoretic imagination, enabled him to create
in topology a new method, the famous Brouwer mixed method (méthode mixte), by
repeated use of simplicial approximations and the degree of a mapping (first defined
by him). Precisely this method led to the first synthesis of combinatorial-algebraic
and set-theoretic topology.

Brouwer’s work from 1909 to 1913 is, as it were, bracketed by two monumental
mathematical creations which laid the foundation for general topology: the work of
Fréchet in 1907, in which metric spaces were defined along with the properties of
compactness and completeness for them, and Hausdorff’s book in 1914, which
provided the basis for the theory of topological spaces. Moreover, in 1913 Janiszew-
ski published an article on irreducible continua which laid the groundwork for a



2 FROM THE EDITOR

large chapter of topology, the so-called topology of continua, which we have seen
blossom in Poland and later in the USA. After the construction of the first
indecomposable continua by Brouwer in 1909, I regard the construction of a
hereditarily indecomposable continuum by Knaster and the proof by Bing that such
continua are topologically unique (the “pseudoarc”) as the highest achievements of
this branch of topology. In 1921 the topology of continua closed ranks with
dimension theory, which was constructed i in the same year by Urysohn and Menger
and for many years constituted one of the ‘'most remarkable and popular areas of
topology. Between 1922 and 1924 general topology reached an essentially new level.
Because of Kuratqwski’s deflinition of the most general topological spaces, the
construction of the ‘theory of compact spaces, and proofs of the first basic metriza-
tion theorems along with the propositions which border them (for example, Urysohn’s
lemma), 1922 is also notable for a proof of one of the most remarkable theorems in
algebraic topology: the famous duality principle of Alexander, who discovered a
number of duality theorems. Thus, by the end of the first half of the 1920’s enough
had happened both in set-theoretic topology and in combinatorial topology that the -
time had come for a new, second synthesis of the two main directions in topology.

The beginning of this new synthesis was the definition in 1925 of the nerve of a
covering of a topological space. The finite canonical coverings of a (compact metric)
space, considered together with their natural order, enable us to connect the nerves
of these coverings by simplicial mappings and thereby obtain the so-called projective
spectrum of the space.

The projective spectra make up a particular case of inverse spectra, and it was in
this special particular case that one of the most important concepts in contemporary
set-theoretic mathematics arose: the concept of an inverse spectrum.

The projective spectrum of a space made it possible to reduce the topology of the
space to properties of simplicial complexes and their simplicial mappings, properties
of a combinatorial nature in essence. _

This made it possible, in particular, to determine the homology invariants of a
(compact metric) space by reducing them to the corresponding inVariants of the
complexes that are the nerves of refining coverings of the space. This method of
determining homology invariants was carried over to arbitrary spaces by Cech in
1932 in his famous paper “Théorie générale d’homologie”. At about the same time
as the determination of homology invariants of compact metric spaces with the help
of nerves of coverings, Vietoris constructed his metric theory of homology in
compact metric spaces, based on the concepts of an e-cycle and of e-homology and
constituting a far-reaching development of ideas of Brouwer presented in the latter’s
brilliant note “Invarianz der geschlossenen Kurve”. .

The Alexander duality theorem and the availability of the homology invariants of
compact metric spaces led in 1927 to the proof of the first duality theorem of
Alexander type for all compact sets in Euclidean spaces. However, the first really
fundamental progress in duality theory after Alexander’s theorem was achieved only
later in 1932 by the proof of the famous Pontryagin duality principle, which was
epochal both in topology and in topological algebra. The homological theory of
dimension for compact metric spaces was constructed at the same time (1930—1932).
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The homological and, in general, combinatorial-algebraic topology of compact
metric spaces that took shape as a result of these investigations infused the work
relating to the second period of synthesis of algebraic and set-theoretic topology
with a concrete geometric content. The conclusion of this second period was marked
by the emergence, on the one hand, of a theory of homological properties of the
disposition of complexes and closed sets (in compact Hausdorff spaces) in 1943,
and, on the other hand, of a duality theory for nonclosed sets in Euclidean spaces,
worked out at the end of the 1940’s.

The algebraic topology of both polyhedra and topological spaces as a whole was
raised to an essentially new level by the creation by Alexander and Kolmogorov in
1934 of the concept of cohomology and the subsequent construction of the theory of
cohomology and cohomology operations.

Enormous progress in general topology was achieved in 1928 and from 1934 to
1936 by the work of Tychonoff and M. Stone and Cech, respectively.

Immediately after the end of the war there began a period of stormy development
both of algebraic and differential topology and of purely set-theoretic topology. But
I shall not go into all this.

There has also been a new, third period of synthesis of set-thcoretic and algebraic
topology. This period is continuing at present. It began with the creation by Borsuk
of the theory of retracts, and continued with the creation, also by Borsuk, of the
theory of shapes.

Both the theory of retracts and the theory of shapes relate to general topology in
their subject matter, but both have an explicitly expressed geometric character. The
theory of shapes is in essence a set-theoretic form of homotopic topology, and it is
connected with cohomology theory and, consequently, with algebraic topology. On
the other hand, there are exceedingly close connections between the theory of shapes
and one of the most important parts of “infinite-dimensional” topology, namely, the
theory of so-called Q-manifolds, i.e., compact metric spaces that are locally homeo-
morphic to the Hilbert cube.

The theory of inverse spectra, today one of the most powerful methods of
investigation and construction in topology, has also penetrated essentially into the
theory of shapes in its present form. The very substantial development of the theory
of inverse spectra in the most recent years is due first and foremost to Shchepin and,
first of all, to his spectral theorem asserting that under reasonable hypotheses two
uncountable inverse spectra have homeomorphic limit spaces only when they con-
tain isomorphic cofinal subspectra. This theorem makes it possible to solve the
problem of whether two spaces are homeomorphic in a number of important
concrete cases.

The spectral theorem enabled Shchepin to construct an “uncountable” version of
the theory of infinite-dimensional manifolds, namely, the theory of so-called
Tychonoff manifolds, i.c., compact Hausdorff spaces locally homeomorphic to a
Tychonoff cube of a given uncountable weight 7. In some of its parts this theory is
analogous to the theory of Q-manifolds, but in other parts it is quite unlike the
latter.

Shchepin’s theorem has an essentially “uncountable” character: there is no
analogous theorem for countable spectra.
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It follows from the foregoing that the substance of the synthetic interpenetration
of the main directions in topology has changed with time in the most recent decades
of its development and existence, yet has always been one of the basic conditions for
real progress in our area of mathematics. Despite the heterogeneity of its content,
topology as a mathematical discipline has always been unified, and permit me to
express today my certainty that success in advancing it not only at present but also
in the future resides precisely in this unity. Such advancement is stimulated by
conferences like the first topology conference in 1935 and the présent conference,
because it is precisely in the unity, i.e., in the combination of different trends within
a given area, that the basic meaning of large international scientific gatherings is
found. '

In conclusion allow me to express my wish and hope that this conference will be a
significant new stage in the development of our area of knowledge.

P. S. Aleksandrov

-
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PARAMETRIC CANONICAL HOMOLOGY -
AND COHOMOLOGY GROUPS OVER PAIRS

OF COPRESHEAVES AND PRESHEAVES, RESPECTIVELY
UDC 513.83

D. O. BALADZE

ABSTRACT. Duality theorems are established for parametric canonical homology and
cohomology groups of a locally compact metrizable space over pairs of copresheaves
and presheaves, respectively.

Bibliography: 4 titles.

Let R be a locally compact metrizable space, C a closed subspace of R, and
w = {(U,V,)} a system, directed by refinement, of canonical coverings of the pair
of spaces (R, C) (see 1]). It is known (see [1]) that instead of a system w = {(U,, V)},
directed by refinement, of coverings of the pair of spaces (R, C) one can take a
system @ = {(U,, ¥,)), directed by refinement, of open coverings (I, 7,) of (R, C),
in which the closed sets u, € U, and v, € ¥, in the coverings (U,, V,) are replaced
by the open sets (#,, &,), i, € U,, b, € V,, differing little from them and such that
the relations of refinement of the coverings and the structures of the nerves of these
coverings remain intact. By K, we denote the nerve of the covering U, of R, and by
L, the nerve of the covering ¥, of C. Further, let X be an arbitrary locally finite
complex, let (4, A’) and (B, B’) be conjugate pairs of copresheaves and presheaves,
respectively, with base R (see [2]), and let p be an integer.

We consider the set x = {x,} of chains x, of the complex X o over the pair of
copresheaves (A4, A') (see [2]), defined for each simplex r € K and possessing the
property that dim x, = p + dim 7. We shall call such a set of chains x = {x,} a
p-dimensional parametric chain of the complex K, over the pair of copresheaves
(4, 4’), if for almost all simplexes r € K the coefficients of the chains x, lie in the
corresponding subgroups A'(|t]), A'(|z]) C A(J¢]). With respect to the operation of
addition (x + y), = x, + y,, the set of all p-dimensional parametric chains of the
complex K, over the pair of copresheaves (4, A') is a group, which we shall denote
by CK(K,; A, A’) and which we shall call the group of p-dimensional parametric
chains of the complex K, over the pair of copresheaves (4, 4’). We denote by
CH(Ly; A, A') the group of p-dimensional parametric chains of the complex L, over
the pair of copresheaves (4, A"). The factor group CI,K( K,; A, A4) Cp"( L;A A)is
denoted by CX(K,, L,; A, A’) and will be called the group of relative p-dimensional
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parametric chaips of the complex K, modulo L, over the pair of copresheaves
(A, A). As 3-9 =0, we obtain a chain complex {CX(K,, L,; 4, 4)}, whose
homology group is denoted by H]f( K, L, A, A") and called the p-dimensional
parametric relative homology group of the complex K, modulo L, over the pair of
copresheaves (A4, 4'). . v

Now let C£(K,, L,; B, B') be the group of relative parametric p-dimensional
cochains of the complex K, modulo L, over the pair of presheaves (B, B’) (see [2]),
Le. that consisting of those p-dimensional parametric cochains y = {y"}, whose
values on L, are trivial and such that for almost all simplexes = € K the coefficients
of the cochains y” lie in the corresponding subgroups B’(J¢[) C B(|¢t]). Here also, as
8 - 8 = 0, we obtain a cochain complex {C{(K,, L,; B, B’), 8}, whose cohomology
group is denoted by HE(K,, L,; B, B’) and called the p-dimensional parametric
relative cohomology group of the complex K, modulo L, over the pair of presheaves
(B, B"). ‘

The following can be proved.

THEOREM 1. If the pairs of copresheaves and presheaves (A, AY and (B, B)
are conjugate, then the relative parametric homology and cohomology groups
Hf (K, L, A, A') and HY(K,, L,; B, B') of the complex K, modulo L, over the
pairs of copresheaves and presheaves (A, A’y and (B, B'), respectively, are dudl, i.e.

HS(K,, L,; A, A')|HE(K,, L,; B, B').:

If « <'8; a, B € 7, then the locally finite simplicial map p’: Ky — K, defines the
homomorphisms ) ‘ o
p2f: HY(Ky, Lg; 4, &) > HX(K,, L; A, A)
. and »

g HE(K,, L,; B, B') = HE(K,, Ly; B, B').
These groups and homomorphisms form an inverse spectrum
(HX(Ko Lo 4, 4), 025)
and a direct spectrum
{HR(K,, L; B, B),a3%).

We call, by definition, the limit groups of these spectra the canonical relative
p-dimensional homology and cohomology groups of the space R modulo C'over the
pairs of copresheaves (A4, A’) and presheaves (B, B"), respectively. We shall denote
these groups by HX(R, C; 4, A’) and HE(R, C; B, B"). '

Here the following can be proved.

THEOREM 2. If the pairs (A, A') and (B, B) are conjugate, then the relative
parametric canonical p-dimensional homology and cohomology groups HP" (R;C; A4, 4)
and HE(R, C; B, B’) of the space R modulo C over the pairs of copresheaves (A, A’)
and presheaves (B, B’), respectively, are dual, i.e.

H(R,C; 4, A)|HE(R, C; B, B’).

The proof relies on Theorem 1 and on the conjugacy of the homomorphisms p*#
and wly. -
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In the case where the parameter K consists of a single point e, i.e. K = e, the
canonical relative parametric p-dimensional homology group Hf( R, C; A, A') of the
space R modulo C over the pair of copresheaves (A, 4") coincides with the relative
canonical p-dimensional homology group H,(R, C; A, A’) of the space R modulo C
over the pair of copresheaves (4, A’) defined by us in {3}, and the relative canonical
parametric cohomology group HZ(R, C; B, B’) of the space R modulo C over the
pair of presheaves (B, B’) coincides with the relative canonical cohomology group
HP?(R, C; B, B") of the space R modulo C over the pair of presheaves (B, B’) (see
(3D

Let‘(Ka, L,) be again the pairs of nerves of the pairs of coverings (fz’a, 17“),
(U, V) e Q, of the pair of spaces (R, C), and CPK(KQ, L, A, A’) the group of
relative parametric p-dimensional chains of the complex K, modulo L, over the pair
of discrete copresheaves (4, A'). Further, let f be the map of the pair (4, 4A’) onto
the discrete pair of copresheaves (B, B’) for which f.(A(u)) = B(u) and f,(A'(u)) =
B’(u). Denote F(u) = Ker f, and F'(u) = Ker(f,/A'(4)). In this case the pair of
copresheaves (F, F’) with base R is obtained. Further, the exact sequence

0 (F,F)—-(A4,4) > (B,B)>0
determines the exact sequence .
0- CHNK,, L, F, F)- CK(K,, L A4, 4)
- GX(K, Ly B,B') = 0 ¢y
of groups of relative parametric p-dimensional chains of the complex K, modulo L,
over the pairs of copresheaves. ’

Let HFK(KQ, L,; A, A’) denote the relative parametric p-dimensional homology
group of the complex X, modulo L, over the pair of copresheaves (A4, A'). The exact
sequence (1) and the connecting homomorphism
‘ a:HY, (K, L,; B, B") - HX(K,, L,; F, F')
define the exact homology sequence '

o > HS (K, Ly B, BY) —» HX(K,, L,; F, F')
> HN(K,, L,; 4, 4') > H;‘(Ka, L,; B, B (2)
- HPK I(Ka’ Lu; F’ F’) -

of relative parametric homology groups of the complex K, modulo L_, taken relative
to the pairs of copresheaves. The sequence (2) is called the relative parametric
canonical homology sequence of the complex K, modulo L,, generated by the
epimorphism f: (4, 4’) - (B, B"). _

Analogously to this, the exact parametric cohomology sequence

> HE"W(K,, L,; B, B') > HE(X,, L,; F, F')
~ HR(K,, L,; 4, &) > HE(K,, L,; B, B') (3)
= HE YKy, Ly, Fy F) > -

)

generated by the epimorphism f: (A, A') > (B, B'), is constructed. Here it is
assumed that the pairs (F, F'), (4, A’), and (B, B’) are pairs of presheaves.
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The system {(K,, L,)} of pairs of nerves (K, L,) defines an inverse spectrum of
exact sequences (2) of relative parametric homology groups. The limit sequence of
this spectrum

- > HX (R,C; B, B’) > H¥X(R,C; F, F)
- HX(R,C; 4, 4) - HY(R,C; B, B') @)
= HX ((R,C; F,F) > ---,

consisting of the relative canonical parametric homology groups of the space R
modulo C, taken over the pairs of copresheaves, is semiexact (see [4]). The sequence
(4) is called the relative canonical parametric sequence of tl_:e space R modulo C
generated by the epimorphism f: (4, A') —= (B, B’). Further, again the system
{(K., L,)} of pairs of nerves (K,, L,) defines a direct spectrum of exact sequences
(3) of relative parametric cohomology groups, whose limit sequence

. —» HZ"Y(R,C; B, B') » HE(R,C; F, F)
- HE(R,C; 4, &) - HY(R,C; B, B") )
— HE*Y(R,C; F,F) - -

is exact (cf. [4]). The sequence (5) is called the relative parametric canonical
cohomology sequence of the space R modulo C, generated by the epimorphism f:
(A4, A") > (B, B). i ’

If we now chose for B the system { A(|¢])/A'(|tD} of factor groups A(|z])/A’(|tD,
and for B’ the system { A’(J¢)} of trivial subgroups of the factor groups A(|¢))/A’(j1),
then from (4) and (5) we get the sequences

- - HfH(R', C,A/A, A') —» H;‘(R, C; 4, 4)
- HY(R,C; A, &) » HX(R,C; A/A', A') (6)
- H;‘_I(R,C; A A)—> -

and

- = HE"Y(R,C; A/A', A') > HE(R,C; A', A")
- HE(R,C; 4, 4') > HE(R,C; A/A4', A) )]
- H*Y (R, C; A, A) - ---

From the exact sequence (7) the following result is obtained:

THEOREM 3. If the space R has trivial (p — 1)-dimensional relative modulo C
canonical parametric cohomology group for finite parametric cocycles and trivial
(p + 1)-dimensional relative modulo C canonical parametric cohomology group for
infinite parametric cocycles over the presheaves A/A‘ and A’ respectively, then the
p-dimensional relative canonical parametric cohomology group HE(R, C; A, A’) of the
space R modulo C over the pair of presheaves (A, A’) is the extension of the
* p-dimensional relative canonical parametric cohomology group HE(R,C; A) for in-
finite parametric cocycles of the space R modulo C over the presheaf A’ = {A'(eD} &y
the p-dimensional relative canonical parametric cohomology group HE(R, C; A/A") for
finite parametric cocycles of the space R modulo C over the presheaf A/A’ =
{AGD/4(IeD}). :

-



