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PREFACE

I HAVE written this book in the belief that it is possible to learn
Dynamics and answer examination questions at the same time.
Indeed, the number of such questions which have accumulated over

“the last century and which have circulated in the textbooks and '

examination papers is so great that the weak student may perhaps
be forgiven for suspecting that the subject consists of a bewﬂdermg
et of tricks especially devised for their solution.

In fact, the foundations of the subject consist only of a few simple
experimental laws and physical observations, but they are applicable
to a very wide selection of the natural phenomena of everyday
experience. It therefore seems sensible to present the subject by
first explaining the ideas which are involved, in a suitable algebraic
framework, and then illustrating the scope of their applications by
solving & large number of typical problems. By selecting most of
these problems from university examination papers I have tried to
take some of the sting ouf; of these as well.

The theory of vectors has recently provided a novel approach to
many dynamical problems, particularly those concerned with non-
bolonomic systems, and it is now desirable to weave the vector
methods and the analytical methods into some sort of harmony. The
final emphasis will really be a matter of individual taste, but the
student would be ill-advised to condermn one or other of the tech-
niques until he has thoroughly appreciated its possibilities. To

-acquire facility in using vector methods it is important te uader-

stand the concepts of “ linearly independent vectors ” and “ rotating
frames of reference ”’ and also to be able to expand certain- vector
products. Because of this, and to ensure that all the relevant theory
" is available, I have included a chapter on Vector Algebra ; this, in
spite of the fact that many textbooks now have chapters on “ voetors,”
althongh the effect on our students is as yet far from decisive.

I have been greaily helped by the kindness of Professor H. Bondi

and of Dr. L. Pincherle, both of whom read the manuscript, and I
was glad to be able to take advantage of much of their advice.

My thanks are due both to the University of London for permission
to reprint exsmination questions and to the Syndics of the Cambridgn
University Press for permission to reproduce questions set in the
Tripos papers and alss questions which are to be found in Theoretical
Mechanics, by A. E. H. Love. These latter questions are dencted by
the letter (C.) in the exercises at the ends of the chapters.

Finally, it does not seem inappropriate to cornmend the pubhshers
once more for their persistense and daring in encouraging me to
write the beok.

R. H. ArrIN
London, 1959.
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CHAPTER I
HISTORICAL FOUNDATIONS

1.1, Galileo Galilei *

It is truly said that the micdern science of dynamiecs was founded
by Galileo.

He was the first man to systematically investigate the motion of
falling bodies. Prior to this men had generally felt reasonably satisfied
with the vague Aristotelian view that every object must seek its
“ place " in the universe : thus heavy bodies must fall and light ones
rise or, at Jeast, fall less quickly. This was the why of falling bodies.
Galileo set himself the task of discovering how bodies fall, and in
succesding admirably in this he was in fact laying the mfellectual
foundations of what we now call science.

By careful experiments with a ball relling down an inclined plane
Galileo discovered the formule v = gi and s = 4gi?, where ¢ is a con-
© stans, and here it is as well to remember that ‘.f,here were no clocks
available which he could use for accurate measuréments of small
intervale of time. The constant g, being the ratio of velocity to time,
is & measure of acceleration, and this idea too was contributed by
Galileo, Thus he had solved the general problem of the motion of a
body which moves in a straight line with a constant acceleration.

Now the fact that a heavy body falls to the ground had always been
associated with the fact that a heavy body has a weight, i.e. is acted
on by a force, but, before Galileo, it was not known in what sense
force produces motion. It was Galileo who first perceived that
force (or pressuie) is not determinative of ejther position or velocity
but of acceleration, or change of velocity. And here it is important
for uis to appreciate the coneept of force in its historical context.

The word force, or forces, had arisen as an equivalence to the words
circumstances which determirie motion, and once the precise nature of
this determination had been discovered {that is to zay, “ that which
determines motion ” is ‘ that which determines accelera,tmn ’} it was
immediately possible to deduce the Law of Inertia, viz. * when there
‘are no forces acting on a body it moves in a st,ralght line with constant
(including zero) velocity.”

In connection with his work on bodies falling under gravity \or
under their weights) Galileo was also able to snlve the problem of a
projectile with oblique projection. His method was that found in our

* Ttalian mathematician-scientist. Born in Pisa 1564. Died 1642.
¢.D. 1 1



2 CLASSICAL DYNAMICS

early scheol text-books, but we mention it here because it iiiustrates
the idea that separate forces acting on a body produce their own
acceleraticns which, in the proper circumstances, can be separately
treated in finding velocities and distances. Thus, in the case of the
projectile we have a constant acceleration in the direction of the
downward vertical and a zero acceleration horizontally. The distances
travelled in a time ¢ in these two directions, assuming the velocity of
projection is ¥V inclined at an angle « tc the horizontal and below the
horizontal, will be simply
’ y = Visino + §g82 (downwards)

and z=Vicose thorizontally)
These immediately give the narcbolic are
gzt
= % tar e
y=wtana + 2V2 costc

The fact that these twe motions take place simultaneously and inde--
pendently illustrates the principle of the purallelogram law for accelera-
tions. 'Thig parallelogram rule was already an accepted part of
Statics, having been ably demonstrated by the Dutch mathematician
Simon “Stevinus.* Gencraily speaking we can say that it is the
tndependence of the forces (zocslerations) which results in a parallelo-
gram law for their composition. This property of independence
enables us to identify & one-tc.ome correspondence between the
“vector ” and a geometrical displacement, and two simulteneous
displacements are equivalent to a third which lies along the relevant
diagenal of a certain paralleiogram. These ideas we ehall analyse
more fully when we coine to ecnzider vectors in Chapter 11,

Finally we shall medtion Galileo’s examination of the oacillations
of a simple pendulum, botk the iscchronism and the general form of
the formula for the pericdic time beirg known tc him. Furthermore,
motion on & curve (the circalar arc described by the bob of the pendu-
lum} meant for Galileo motion on a auccession of infinitesimal inclined
planes, snd with the sid of the pendulum he was able to show that the
velocity acquired by a heevy body in moving freely down an inclined
plane was dependent only on the height through which it had effectively
fallen. Thus the bob of a penduium will rise on one side of the lowest
poaition just as high as it has previously fallen on the other, and by
suddenty shortening the length of string when the bob was in the
lowest position (by placing stops at appropriate points) this property
was shown to be independent of the radius of the arc described—
and therefore indspendent ef the particular * succession of incliried
planes ”* described.

+ 1548-1820. Stevinus investigated equilibrium on an inclined pisne ; demon-

strated the resolution of fcrcea as well as their composition, and distingnished
between steble and unstable squilibrium.



HISTORICAL FOUNDATIONS ‘ 3

Ttis clearthat thisresult amounted tothe principle of thecomservation of
* energy, a principle which we now know to be of tremendous significance.

1.2 Christisan Huygens *

In his contribution to dynamics Huygens proved, among other

things, that a body which describes a circle of radius r with & constant
1
velocity v must experience an acceleration towards the centre of ?;-

This involved the idea that velooity possesses not only megnitude but also
direction, and that acceleration can mean change of direction of veloeity
even when there is no change in the magnitude of the velocity.

Huygens also did a great deal of work on the pendulum and invented
the first pendulum clock—inventing the escapement on the way.
In this connection he went much further than did Galileo in that he
solved the problem of the “ centre of osciliation” of a compound
pendulum. This, of course, involved the dynamics of
several connected bodies (or particles of a rigid body) -
and his method involved such an original concept that
" it is worth discusging in more detail.

Consider a rigid body in the form of a heavy rod 04

which is free to move in a vertical plane about a hori-
zontal axis through one end O, as in Fig. 1. Now
regard the rod as made up of a large number of small
masses Mm,, Mm,, . . . &t distances x;, z,, . . . from the
end O, and let m in the diagram be a typical mass,
Suppose now that we let the rod swing freely under '
gravity from its oxtreme position in which it is Tre. 1.
inclined at an angle a to the downward vertical.
Then Huygens argued that the centre of gravity of the rod must rise
through the same distance as i falls. This is an imaginative extension
of Galileo’s result obtained for the motion of a single mass, and again
we can clearly see that it amounts to the modern principle of the
conservation of energy.

Suppose the centre of gravity falls a distance z by the time the Tod
reaches the vertical position, then

Zm m,z, 008 a + Mex cos<z+
oS
D ma

giving z—eotmZ . . . . . (1)
m .

* 1629-95. Dutch mathematician, famous also for his wave theory of light
and Huygens’ Principle.

1—2



4 £LABSICAL DYNAMIOS

Let the point P on 04, where OP =1, acquire a velocity « during
the downward swing, then the mass m acquires a velocity zu. But

Galileo showed that a body ‘with velocity v will rise a height 2_9 and

so each particle of the rod will rise a height Z—g x 2. The centre of
-gravity will therefore rise a height 2’ given by ‘

2 z m = §-g Z ma? . . . (2).
If we put 2’ = 2z, (1)’and (2) give

g—;Zmﬁ:cosame co . (3)

.To find the length of the equivalent simple pendulum (say I} we can
a.pply {3) to the single mass of the imagined bob whence

u? e
=.l= . . . . 4
% cosa (4)
mad
Then (3) and (4) give ===
X

Writing @ as the centre of gravity and 0G = &, Z m = M we get
ma®
2™
. Mz

We thus see that Huygens had also discovered the quantity z‘mx’,

pnow known (after Euler) as the moment of inertia of the rod about the
axis through 0. Indeed he went on to obtain the ‘ parallel axes”
theorem and the complete analysis of what we now call the compound
pendulum.

Other contributions by Huygens included an a.nalysxs of the cyclmd
and its isochronous property and furthermore, in 1669, he submitted
to the Royal Society his work on the impact of elastic bodies. In this
" latter problem he obtained the correct solution, indicating therein the
significance of the product mass X velocity (momentum). Here we
must mention .that both Wallis and Wren had submitted equally
correct solutions at the end of 1668, the one dealing with collisions
of inelastic bodies and the other with elastic collisions. The final form
of the laws of impact was to be provided by Newton and published in
his Principia.
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1.8 Isaac Newton *

From the point of view of this study the two great achievements
of Newton were (2) his theory of universal gravitation, and (b) his
formulation of the principles of mechanics. It is very important for -~
us to examine, in some detail, the concepts which he introduced and
clarified in the course of his work,

Ever since Galileo had invented his telescope men had been studying
the motions of the planets with ever increasing intersst and accuracy.
In particular, a great deal of observed data had been collected by
Tycho Brahe,f and from this Kepler  had deduced his famous three
laws (1escr1bmg the motion of the planets about the sun, These
amounted to :

{1} The planets describe ellipses with the sun situated at a focus,

(2) The radius veetor joining the sun with a planet describes equal
areas in equal times, i.e. the rate of description of sectorial area
i8 constant.

(8) The cubes of the mean distances of the planets from the sun are
p*opor*xonal to the squares of their times of revolution, i.e. if.
20 is the ma]or axis of the elhptlc orbit and ¢ is the periodic -
time then % oc a3,

Newton was able to show that these laws were competible with the
assumption that each planet possesses an acceleration towards the
sun which is inversely proportional to the square of their distance
from it. Furthermore he saw this acceleration as being of the same
nature as that experisnced by bodies falling near the earth’s surface.
This remarkable generalisation led him to the concept that all bodies,
taken in pairs, induce in each other mutual accelerations. Trans:
lating this into terms of force requives a new principle and Newton
supplied this in his law of * action and reaction ”—and this in its
turn provides us with a view of mass not possessed by any of Newton’s’
predecessors, & concept which dlstmgmshes between mass and
heaviness (or weight).

The laws of motion which Newton pubhshed in hls Prmcszm smount
to the following :

Law I Every body perseveres in its state of rest or of uniform
motion in a straight line except in so far as it is com-
pelled to change that state by impressed forces.

Law II  Change of momentum is proportional to the 1mpressed
force and takes place along the line of action of that
force. :

) - .
* 1642-1727. English mathematician. His great work, Philosophiae Naituralis -
Principia Mathematica, was published in 1687.
1 Danish astronomer, 1546-1601.
} German mathematician, 1671-1630.
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Law 17! Action and reaction are always equal and opposite ; that
is o say, the actions of two bodies upon each other are
equal and directly opposite.

Newton perceived that a body possesses an invariable property
known as its mass aud that, when it possesses an acceleration § then
the force activg on the body will be P = kmf, where k iz a constant
of proporticnality. In modern notation Law II will be written

dy | . s :
Foree « g’(fmv) or w3 when the mass m does Dot artificially change

with time. ‘Thus we ses that the weight of a body, being the force myg,
" ean vary if ¢ varies, whereas the mass m will at the same time remain,
constant. Hurthermore, the saceses of twe bodies csn be acourateiy
compered by weighing them in the two pans of a balance and the
weight of any one bhody will be found by weighing it with a spring
balance. If we suppose the units of speasurement to be suitably
choses; we can write & == 1 and Law 11 &3

Foree = mass X acosleration

Then Law ili, applied to two bodies 4 snd B of masgees m and m,
respectively (Fig. 2), says that the mutusi forses P and ¢ are equal.

M..--...;--_E- - ....-'-_gq—nﬁ'o?
A —>f f,<— B
) ¥Fa. 2.

If 4 possesses acceleration f; and B fy wo got
P=mf = mfy=Q

my_ J '
and so ' —_— Z | . (1)(
Unforturately Nowton defined mass as density X volume, and since
density involves the ides of mass this * definition ” is clearly inade-
guate. Since Law 1I attempts to relate mass to force it is necessary
to have a logically independent view of the one before we can talk
about the other. Law JII also involves the ided of mags. Considering
also the rather obvious fact that Law I is an immediate deduction
from Law 1I it is clear that these laws are not the most economical
possible. :

A set of propositions designed to reduce Newtor’s laws to their
simplest and most economical in thought was given by E. Mach at
the beginning of this century. These emphasise- the experimental
nsture of the foundations of mechanice and are as follows :

I. Experimental proposition. Two bodies set opposite each other
induce in each other opposite accelerations in the direction of
their line of junction.
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Definition. 'The mass-rstio ¢f any two bodies is the numerical
value of the inverse ratio of their mutuslly induced zccelerations.
Definstion. Moving foree iz the produc:, mase X acceleration
for any body.

I1. Ezpervmental proposition. The sccclerations which any nuraber
of bodies 4,, 4,, . . . induce in & body B, are independent of
each other. '

The two definitions of mass and force lead deductively to Newton’s
law of actiov-reaction and, of course, includs Laws II snd 1. The
second experimnental proposition implies the parollelugram of forces,
which was itself explicitly stated }\y Newton in a coroilary to his three
laws of motion.

" . Units of mass, force

The units of mass are the pound (1b.) and the gramme (gm ).

The units of force are the poundal (when mass is in pounds and
acceleration in ft./sec./sec.), and the dyne (when mass is in grammes
and acceleration in cm.fsec./sec.). The two systems are referred to
as the ft. Ib. sec.-system and the c.g.s.-system.

When forces are measured in terms of weights, ag they can be, this.
is indicated by calling them pounds-weight (Ib, wt.) or gmmme&-we!ght
(gm. wt.). The law of motion being now

Force (dynes) = mass {gm.) X aceeleratlon (c.g.8. )

we have 1 gm. wt. =1 gm. X ¢ cm.[sec.[sec.
=g dynes .

Thus .  zgm. wt =gx dynes

and 2 1b. wt. = gz poundals

© The values of g in the two systems of units are 322 ft.[sec.sec. and
681 om.fsec./sec. The basic (Newtonian) equation, viz. F' = —(rrw),
holds only in terms of these absolule units.

1. 4 Universal gravitation

As menticned in 1.3, Newton solved the age-old problem of the
motion of the planets ahout the sun by ascribing to each planet an

. 1 . .
acceleration towards thes sun proportional to a7 being the distance
between sun aud plapet. Tn terms of force we cen now write : -~

every body attracts every other body with a force which iz inversely
pmp;rtsonal to the square of their distance npari and direcly pro-
wortinral to the medud of their masses.
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Thus, in Fig. 2 of 1.3, we should write
iy
P=-Q=7r-rl—3—”f R )
where y is a universal constant.
If now, for example, 4 is the sun and B is a planet, the acceleration
of B towards 4 will be :

famm=y3=5.- . . . (2)

where p will be the sawe for all planets of the sun. The value of y has -
been determined to be 6-66 x 10~ c.g.s. units. :

It is also clear from (1) that ideally the distance r can only be
known precisely when the masses at 4 and B are identified as very
small particles of matter, occupying negligible volumes. In dealing
with finite distributions of matter we are therefore obliged to use the
methods of the integral caleulus involving, as they do, limiting pro-
cesses in which the objects of calculation are divided into infinitesimal
elemsnts. There are one or two simple cases which, by way of
illustration, we can very well examine at this stage.

Example 1. To find the gravitational attraction on a particle of
unit mass due to a uniform rod 4B of density p per unit length.
Let the point P be a distance p from the line of the rod, which we

Fia. 3.

take to he the z-axis in Fig. 3. Let p dx be an element of mass at any
d

point @ of A B, then the attraction at P of this will be y.-;,—ng . Writing

0Q = z = p tan 0 this becomes

pPsectf  pp 6
yp'pseo’@ ‘—?'-pz_

which equals the attraction at P of the corresponding arc at B of the
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circle, centre P, radius . Thus the resultant attraction of the rod 4 B
at P bisects the angle 4 PB (see Fig. 4) and is of magnitude

o [ ocos s dh = 2P sina = 224
F—2. 0p.cos¢d¢_ » sma_.p szy\n(%LAPB)

Fia. 4.

~ Example 2. To find the attraction per unit mass at a point P which

is either outside or inside a uniform spherical shell of density p and
radius a.

Let P be outside the shell as shown in Fig. 5 with OP =¢ > a.

Fia. b.

Divide the surface into small circles around OP as axis as shown.
Then each point on such a small circle is the same distance « from »
and by symmetry the resultant attraction F at P is along PO. The
attraction at P due to any one small circle will be
(mass) p.2mat sin 0 cos ¢
Y 008 =1y 2 .do

ance 22 = a? + c? — 2ac cos 8 it follows that z dx = ac sin € d9 and

we get
J‘ PEag cos ¢
m— 211’,7,/ .
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Since a* = a® 4- ¢* -~ 22c 008 ¢ this beoomeg
»  TPY.G PE( ¢ — a%
T S i
When P ig outside the shell PH =¢ —a, PK =¢ + a.
‘When P is inside the shell PH =g — ¢, PK = ¢ + ¢
e N
mmwmnpn%mmmsmswlpm%%?
M = ictal mass, and in this case the shell behaves like a particle of
‘mase M ab the cenire O. :
When P lies inside the shell we get F = 0 (all ¢}.
“Qorollary. We can now- find the atiraction at a point P due to &
uniform solid sphere of radius a.
(i} When P lies outside the sphere it is clear that the attraction is

Mass
(al=§wm%’

{ii) When P lies ingide we get, from Fig. 6,
Attraction = y($mpc®)fc? = $mypc -

M
=Ya where

4

Fio. 6.

1.5 Laws of impact ,

We have already noticed that the problems of the collisions between
perfectly elastic bodies (those which completely recover their former
shapes after deformation) and hetween inelastic bodies (those which
suffer permanent deformation) had been studicd sad solved by Wren,
Huygens and Wallis. Al three had found that the separate moments
of the colliding bodies sufferod sudden changes, i.e. suffered finite
discontinusties.

Newton alse conducted eluborate experiments on the problem of
impact and published Lis lsws relating to it in Principia. If two
rolling smooth spheres (e.g.) meet in collision ou & horizontal table the
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wmomsnbum of each nhang-,,s suddenly through o fivite amount, We
38y that each sphers has received an v.mpulwvr blow or impulse, and
that this impulse equals the chauge in the momentum. Thus
(v. Fig. 7) if the velocities of 4 and B are u,, v, just hefore impact and
1y, vy just after irapact, if the the mass of Ais M and of Bis M’ we
shall ha.ve :

Mu, — Mu, = -1 . . . . (1)
c. My, — Mo, =1 . . A ¢ 1]
Notico that hers again the law of action—reaction is invoked to say
that the impuises on 4 and B are equal acd opposite, This can be

Fra. 7.

directly confirmed expefzmentally since, by addizg (1) and (2) we geb
Mu, 4 My, = v, + My, . . @
The total momentum remains unchsmbea
The guestion to be settled is now, ** in what proportion is the initial
momentum shared between the two bodies immediately after impact ?
Newton’s experimental law provides the answer in zaying .
Velosity of separation = e X Velocity of approach . (4)
whers ¢ is a constant, known as the cogfficient of restitution, and which
depends on the elastic properties of the two bodies. Thua (4) means
we can write :
— Ug = ey — ?}«) . . . (B)
whenece {3) and {5) solve the problem :
W shall now take a generalisation of (4} as a basis for solvmg more
diverss problems of collision. We shall say that (v. Fig. 8) whenever
two smocth surfaces collide the velocities of the respective bodies alony
-the line of the common normal (at A) are reluted before and after impact
by equation (4).

1.6 Conelusinn .
Tn consideving the dynamics of a single hody the ;mn siplea of
Calileo-Newton lead us to the following point of view,



