THE THEORY OF
RELATIONAL
DATABASES

/3472237

THE THEORY OF
DATABASES

DAVID MAIER |
OREGON GRADUATE CENTER

StV
T PITMAN

PITMAN PUBLISHING LIMITED
128 Long Acte, London WC2E 9AN -

Associated Companies
Pitman Puablishing New Zealand Ltd, Wellington
Pitman Publishing Pty Ltd, Melbourne

Fitst published in Great Britain 1983
. First published in USA 1983

L © 1983 Computer Science Press, Inc.
K H Taft Ct. '
Rockville, Maryland 20850

All rights teserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording and/or otherwise
without the prior written permission of the publishers.

This book may not be lent, resoid, hired out
or otherwise disposed of by way of trade in any form of binding or
cover other than that in which it is published, without prior consent
of the publishers. This book is sold subject to the
Standard Conditions of Sale of Net Books and may not be

resold in the UK below the net price.

This book was first published in 1983 by
Computer Science Press, Inc.
11 Taft Ct.
Rockville, Maryland 20850

Printing 1 2 3 4 5 87 8 8 84 8 Year

Library of Congress Cataloging in Publication Data

Maier, David, 1953-
The theory of relational databases.

(Computer software engineering series)
Bibliography: p. -
Includes index.
1. Data base management. [. Title. II. Series.
QA76.9.D3M33 001.64 82-2518 '
ISBN O-91udu-ye-0 AACRZ
UK ISBN 273-08bL-227

i

10

PREFACE

This book is a revision and extension of notes I wrote for a graduate
seminar in relational database theory given at Stony Brook. The purpose of
that course was to give students enough background in relational database
theory to enable them to understand the current research being done in the
field. T have not avempted to be exhaustive in covering all results in rela-
tiznal database theory—the field has already grown too large to cover every:
thing. Instead, I have attempted to get within “one paper” of all current
wuork: This book should give a student sufficient background to read recent
papers in refutional theory.

While most of the material presented here has been presented before,
there is some new material, particularly on annular covers and in the chapter
on database semantics. I have tried to bring material together that was
available previously only in separate papers, and give some coherence to the
results. That task has involved franslating many of the results into standard
potation. redoing some of the defmmons, and constructing some new proofs
for previously known theorems.

The book is simed at a second course in databases, presumably at the
graduate fevgl, but possibly at the advanced undergraduate ievel: While dn
introductory coutse in Gatabase management systems is not an abolute
prerequisite for this book, it is certainly desirable for some concrete motiva-
tion and intuition for the abstractions presented here. No specific course in
mathenarics is assumed, but there should be un acquaintance with set theory
and the vrudimerits of formal logic. Some of the exercises require some sophis-
ticated combinaterics, but those excrcises are not ceutral to the topic being
developed—they are inciuded for fun. Exercises that are deemed particularly
difticuit are warked with an asterisk.

% course. | hope the book also will bé a useful reference for researchers
alrcady working in the arca. The bibliography is current through October
1981; some of the technical reports presimably have since appeared in o -
nals and conference proceedings. 1 am grareful to Jeff Ulhman for ai 2 ..ance
copy of the bibliography to the second edition of Principles « Database
Systems.

T e ".
S ; [xiv
S L SR S

TABLE OF CONTENTS

Preface e e xiv
Acknowledgementsccoiiiiiiiinii i, 63¥
1. RELATIONS AND RELATION SCHEMES 1
1.1. BrassTacks....... e e 1
1.2. Formalization of Relations e ST 2
13, Keys.....oooiiiiiiiiiiiiii e 4
1.4. UpdatestoRelations 5 -
1.5, EXercisesooeiiiiiiiiiiiiiiiiiiinian. 8
1.6. Bibliogtaphy and Comments PR 10
2. RELATIONAL OPERATORSccoioien.. 11
2.1. BooleanOperationso.iiu.. 11
2.2. TheSelectOperatorciviiieviiienniann.. 13
23. TheProjectOperator..............cocvviiiiiinennnn.n. 15
24, TheloinOperatorcvueiuieneinannrnon... 16
2.5. PropertiesofJoinl 18
26. Exercises.............oiiiiiiiian... e 22
2.7. Bibliographyand Commentso.s. 24
3. MORE OPERATIONS ON RELATIONS 25
3.1. TheDivideOperator...................... e 25
3.2. ConstantRelations..............cccocievuiin. .. e 26
3.3. Renaming Attributes........... e 27
3.4. The Equijoin Operator P 29
3.5. Extensions for Other Comparisons on Domams 31
3.5.1. ExtendingSelection 32
3.5.2. The Theta-Join Operator ererninneaeans 33
3.6. RelationalAlgebra..................c..oiiiiiiiL 34
3.6.1. Algebraic Expressions as Mappmgs 35
3.6.2. Restricting the Set of Operators 36
vit

vii Contents

4.

3.7. - The Split Operator. et eesaaans e 37 -
3.8. TheFactorOperatorccovnenns RN 38
3.9, EXerCiSescuvveneniiiiesanineeianneieiasneennes 39
3.10. Bibliographyand Commentsccovvvenn. 41
FUNCTIONAL DEPENDENCYES...................ooentL 12
41. Definitions ...ttt e 42
4.2. Inference Axioms........ U 44
4.3. Applying the Inference Axioms 47
4.4, Completeness of the Inference Axioms 49
~4.5. Derivations and Derivation DAGs., e 51
4.5.1. RAP-Derivation Sequencescveuvas. - 83
4,52, Derivation DAGs..... . ..ooiviiiiiiiiiat, S6
4,5.3. More about Derivation DAGs 60
4.6. Testing Membershipin F*................ e 63
4.7. Exercises P 69
4.8. Bibliographyand Commentscocicvviann 70
COVERS FOR FUNCTIONAL DEPENDENCIES............ n
5.1. Covers and Equivalence PO 7
52. Nonredundant COVETS ... vevveuieeirrnnrvioereensanss 12
5.3. Extraneous Attributes................coiiiiiiiiiaa..s 74
5.4. Canonical Covers PRI Y 4
5.5. The Structure of Nonredundant Covers P 78
5.6. MinimumCovers Cenhenes PP e 79
5.6.1. Direct Determinationcoooinn.... .
5.6.2. Computing Minimum Covers 84
5.7. OptimalCovers...........c...'ousns Covrrnnnas T 86
5.8. Annular Covers and Compound Functional
~ Dependencies................ e e 87
L T 2 v o %0
5.10. Bibliography and Comments e cereeeee. 92
DATABASES AND NORMAL FORMS.......... [93
6.1. Databases and Database Schemes........... eaereanann 94
6.2. Normal Forms for Databases e)
6.2.1. First NormalForm.............. v eneeeraeas 9 .
6.2.2. Anomalies and Data Redundancy............... 98
6.2.3. Second NormalFormc.cooenimvrennns %9
6.2.4. Third NormalForm...............cociaiinnnn 9
6.3. Normalization through Decomposition.................. 101

6.4.
6.5.

6.6.
6.7.

6.8.
6.9.

Conients

Shortcomings of Normalization through Decomposmon e

Normalization through Synthesis.......................
§.5.1. Preliminary Results for the Synthesis Algonthm o
6.5.2. Developing the Synthesis Algorithm
6.5.3. Correctness and Other Properties of the
Synthesis Algorithm0.........
6.5.4. Refinements of the Synthesis Algonthm e
Avoidable Attributes il PP
Boyce-Codd NormalForm S
6.7.1. Problems with Boyce-Codd Normal Form

EXercisesooviiiimie i iiaiiiaees s ’

Bibliography and Comments [P

7. MULTIVALUED DEPENDENCIES, JOIN
DEPENDENCIES, AND FURTHER NORMAL FORMS

7.1. Multivalued Dependenciescoou0 e
7.2. Properties of Multivalued Dependencies S
7.3. Multivalued Dependencies and Functional
Dependenciesioi i el
7.4. Inference Axioms for Multlvalued Dependencies
7.4.1. Muitivalued Dependencies Alone
7.4.2. Functional and Multivalued Dependencies
7.4.3. Completeness of the Axioms and Computmg
Implicationso i
7.5. FourthNormalFormcopvuviiiiionnn. SR
7.6. Fourth Normal Form and Enforceablllty of '
Dependencies. T
7.7. Join Dependencies [P .". e e
7.8. Project-Join NormalForm.............. et e p
© 7.9. Embedded Join Dependeucles e e e
7.10. EXercisesveieeseieneenannn e
7.11. Bibliography and Comments R P
8. PROJECT-JOIN MAPPINGS, TABLEAUX, AND
THE CHASE . ..o i i i
8.1. Project-Join Mappings........... e
82, Tableaux....... ..o
8.2.1. TableauxasMappingsco....ovunnn
8.2.2. Representing Project-Join Mappings as
Tableaux........cvoieiiiinieininaeaineeneian..
8.3.

Tableaux Equivalence and Scheme Equwalence

0.

Cont_cnts

10.6.

Containment Mappings et iiereer s 156

8.4.
8.5. Equivalence with Constraints.......... e 160
851. Frules..........coiiiiiiniiiiinnn. e 162
C8.5.20 Jrules ...iiniiiiiiiiiii e 163
8.6. TheChase...... S PO 164
8.6.1. The Finite Church-Rosser Property 168
8.6.2. Equivalence of Tableaux under Constraints 174
8.6.3. Testing Implication of Join Dependencies 175
8.6.4. Testing Implication of Functional Dependencies .. 177
8.6.5. Computing a Dependency Basis 180
8.7. TableauxasTemplatescloiitne. 182
8.8. Computational Propertles of the Chase Computation. 186
B.9. EXErCiSesccii iuuiinnieiianieriiioiensenanna 189
8:10. Bibliography and Comments - 194
REPRESENTATION THEORY e 195
9.1. Notions of Adequate Representation.................... 195
9.2. Data-Equivalence of Database Schemes 208
9.3. Testing Adequate Representation and Equivalence
Under CONStraints ccvnvvneereeneneaenienansnennns 210
9.3.1. P Specified by Functional Dependencies Only 211
9.3.2. P Specified by Functional and Multivalued
Dependencies.cooiiiiiiiiiie 215
9.3.3. Testing Data-Equivalence 217
0.4, EXErcises c.oveniieiiinniiiiariiiiinanaeen 221
_9.5. Bibliographyand Commentscoveineivniiin 223
QUERY SYSTEMS i aaeanes 224
10.1. Equivalence and Completenesscovvint. 225
10.2. Tuple Relational Calenlus.coviiiiiiiiit, 227
10.2.1. Tuple Calculus Formulas 229
10.2.2. Types, and Free and Bound Occurrences 231
10.2.3. Tuple Calculus Expressions 236
10.3. Reducing Relational Algebra with Complement to Tuple
' Relational Caleulusovvviviiiiiiieniiaiees 242
10.4. Limited Interpretation of Tuple Calculus Formulas 244
10.4.1. Reducing Relational Algebra to Tuple Calculus
with Limited Evaluation00 247
10.4.2 Safe Tuple Calculus Expressions 247
10.5. Domain Relational Calculus...............ooen wee.. 250
Reduction of Tuple Calculus to Domain Calculus......... 255

Contents xi

10.7. Reduction of Domain Calculus to Relational Algebra. 257
10.8. TableauQueries.l 262
10.8.1. Single Relation Tableau Queries 262
10.8.2. Tableau Queries for Restricted Algebraic
EXpressions.........oooovviiviiiiiiiiiinn 268
10.8.3. Tableau Queries that Come from Algebraic '
EXPressions.co.ouiiiiiniieeionn ... 272
10.8.4. Tableau Queries for Multirelation Databases 274
10.8.5. Tableau SetQueriesouun 276
10.9. Conjunctive Queriescevvvn.n., N 278
10.10. EXercisesovviminr it iiir et 278
10.11. BibliographyandComments, ..., . #Bo6
~11, *QUERY MODIFICATION0oiiiiiiieennnn. 287
11.1. Levels of Information in Query Modification 293
11.2. Simplifications and Common Subexpressions in Algebraic
Expressions.............coo0vinee e s 295
11.3. Optimizing Aigebraic Expressions...................... 301
11.4. QueryDecomposition 307
11.4.1. Instantiation....................coevviinnn., 311
1142, Tterationc.cooiiuiiiinininnunnnnn.. 3i3
- 11.4.3. The Query Decomposition Algorithm........... 315
11.5. Tableau Query Optimization 323
11.5.1. Tableau Query Equivalence................... 323
11.5.2. Simple Tableau Queries e 327
11.5.3. Equivaience with Constraints - 338
11.5.4. Extensions for Multiple-Relation Databases 339
11.5.5. Tableau Set Query Equivalence 348
11.6. Optimizing Conjunctive Queries 350
11.7. Query Modification for Distributed Databases 353
11.7.1. Semijoins.............. il 354
11.7.2. Fragmentsof Relations....................... 359
11.8, EXercisescovuiieueiiieiiiiieiiiiiaaan., 361
11.9. BibliographyandIndex..................covvvnionns. 369
12. NULL VALUES, PARTIAL INFORMATION AND
DATABASES SEMANTICScc. i, 371
121, Nulls........c.ccooiiiiennn, 372
12.2. Functional Dependenmes andNulls AU v, 377
12.3. ConstraintsonNulls.................. e 384

12.4. Relational Algebra and Partial Relations 386

xii

13.

14.

Contents
12.4.1. " Possibility Functions 386
12.4.2. Generalizing the Relational Operators 389
. 12.4.3. Specific Possibility Functions 394
12.5. Partial Information and Database Semantics............. 406
12.5.1. 'Universal Relation Assumptions 406
12.5.2; Placeholdets and Subscheme Relations 408
'12.5.3. Database Semantics and Window Functions. 410
12.5.4. A Window Function Basedon Joins 413
"12.5.5. WeakInstancesoooiiiiiiiiiannn, 416
12.5.6. Independenceiviiniiiiiiiiins 422
12.5.7. A Further Condition on Window Functions. - 427
12,6, EXerCISesovverroriiieraaerrnceesanreaaeniennnas 432
12.7. Bibliography and Comments 437
ACYCYLIC DATABASE SCHEMES 439
13.1. Properties of Database Schemes: 439
13.1.1. Existenceof a Full Reducer 439
13.1.2. Equivalence of a Join Dependency to -
Multivalued Dependencies.................... 442
13.1.3. Unique 4NF.Decompeosition................... 443
13.1.4. Pairwise Consisténcy Implies Total
~ Consistency........oovviiiiinnat. Neredeneen. 444
13.1.5. Small IntermediateJoins 45
13.2. Syntactic Conditions on Database Schemes............. o 447
13.2.1. " AcyclicHypergraphs..................oieitn 47
13.2.2, JoinTrees .. coviieeeciiiinnriisinnennononnns 452
13.2.3." The Running Intersectlon Property 455
13.3. Equivalence of Conditionsoooiiint 455
. 13.3.1. GrahamReductioncoiiaan, 456
13.3.2. FindingJoinTrees..........cooviiinsinnnenes 457
13.3.3. The Equivalence Theorem for Acychc Database
SChemes .. .ccvivniiiiiiinnererneaannnnns 460
13.3.4. Conclusionscovivvnrinieresconenes 477
134, EXOICISES .. .vvvcrinenraneeantivnerosersoscsaisaaness 478
13.5. Bibliographyand Commentsccivieiaeen 482
ASSORTED TOPICSciiiiiiiiianiiniaainannn, .. 485
14.1. Logic and Data Dependenciesocvvintn. . 485
14.1.1. The World of Two-Tuple Relations 486

14.1.2. Equivalence of Implication for Logic and
" Functional Dependencies..................... 488

14.2.

14.3.
14.4.

14.5.
14.6.

15. RELATIONAL QUERY LANGUAGES '

15.1.
15.2.
15.3.
15.4.
-18.5.
15.6.

Contents

14.1.3. Adding Multivalued Dependencies.............
14.1.4. Nonextendabilityof Results
More DataDependenciesoviiviiiiiinn
14.2.1. Template Dependencies......................
14.2.2. Examples and Counterexamples for Template

Dependencies........................oonl L
14.2.3. A Graphical Representation for Template

" Dependencies..........coviivii i,

14.2.4. Testing Implication of Template

Dependencies...................ovvun SRR
14.2.5. -Generalized Functional Dependencies..........
14.2.6. Closure of Satisfaction Classes Under

Projectiono i,
leltatlons of Relational Algebra
Computed Relationst
1441, AnExample..........cooiiiiiiiiiiiiiian,
14.4.2. Testing Expressions Containing Computed

Relations............. oo,

ISBL ..

3 (0] 0] S
Bibliography and Commentscoviiiian s

BIBLIOGRAPHY e et s

..

Chapter 1

RELATIONS AND
RELATION SCHEMES

One of the major advantages of the relational model is its uniformity. All data
is viewed as being stored in tables, with each row in the table having the same
format. Each row in the table summarizes some object or relationship in the
real world. Whether the corresponding entities in the real world actually
possess the uniformity the relational model ascribes to them is a question”
that the user of the model must answer. It is a question of the suitability of
the model for the application at hand.

Whether or not the relational model is appropriate for a particular set of
data shall not concern us. There are plenty of instances where the model .is
appropriate, and we always assume we are dealing with such instances.

1.1 BRASS TACKS

So much for philosophy. Let us consider an example. An airline schedule cer-
tainly exhibits regularity. Every flight listed has certain characteristics. It is a
flight from an origin to a destination. It is scheduled to depart ag a specific
time and arrive at a later time. It has a flight number, Part of an airline
schedule might appear as in Table 1.1.

What do we observe about this schedule? Each flight is .,ummanzed as a
set of values, one in each column. There are restrictions on what information
may appear in a given column. The FROM column contains names of air-
ports served bv the airline, the ARRIVES column contains times of day.
order of the columns is immaterial as far as information content is &on-
cerned. The DEPARTS and ARRIVES columns could be interchanged with
no change in meaning. Finally, since each flight has a unique number, no
flight is representedt , more than one row. A

The schedule in ‘Vuble 1.1 is an example of a relation of type FLIGHTS
The format of the relation is determined by the set of column labels
{NUMBER. FRO"{, TO, DEPARTS, ARRIVES}. These column names are

8550174

2 Relations and Relation Schemes

Table 1.1 FLIGHTS (airline schedule).

NUMBER FROM TO DEPARTS ARRIVES
83 JFK O’Hare 11:30a 1:43p
84 O'Hare JFK 3:00p 5:55p
109 JFK Los Angeles 9:50p 2:52a
213 JFK Boston 11:43a 12:45p

214 Boston JFK 2:20p 3:12p

called attribute names. Corresponding to each attribute name is a set of per-
missible values for the associated column. This set is called the domain of the
attribute name. The domain of NUMBER could be the set of all one-, two- or
three-digit decimal integers. Each row in the relation is a set of values, one.
from the domain of each attribute name. The rows of this relation are called
S-tuples, or tuples in general. The tuples of a relation form a set, hence there
are no duplicate rows. Finally, there is a subset of the attribute names with
the property that tuples can be distinguished by looking only at values cor-
responding to attribute names in the subset. Such a subset is called a key for
the relation. For the relation in Table 1.1, { NUMBER} is a key.

1.2 FORMALIZATION OF RELATIONS

We now formalize the definitions of the last section and add a couple of new
ones. A relation scheme R is a finite set of attribute names {A;, A, ...,
A,}. Corresponding to each attribute name A; is a set D;, 1 < i < n, called
the domain of A;. We also denote the domain of A; by dom(A;). Attribute
names are sometimes called &t¢ribute symbols or simply attributes, particu-
larly in the abstract. The domains are arbitrary, non-empty sets, finite or
countably infinite. Let D = D; U D, U --- U D,. A relation r on relation
scheme R is a finite set of mappings {#,, #, .. ., ¢, } from R to D with the re-
striction that for each mapping ¢ € r, t(4;) must be in D;, 1 < i < n. The
mappings are called tuples.

Example 1.1 In Table 1.1 the relation scheme is FLIGHTS =
{NUMBER, FROM, TO, DEPARTS, ARRIVES}. The domains for each
attribute name might be:

1. dom(NUMBER) = the set of one-, two- or three-digit decimal
numbers, .

ha g
e
~

Formalization of Relations 3

. ' - ’ {
2. dom(FROM) = dom(TO) = {JFK, O’Hare, Los Angeles, Boston,
Atlanta},
3. dom(DEPARTS) = dom(ARRIVES) = the set of times of day.

The relation in Table 1.1 has five tuples. One of them is ¢ defined as
t(NUMBER) = 84, t(FROM) = O’Hare, t(TO) = JFK, t(DEPARTS) =
3:00p, z(ARRIVES) = 5:55p. - - . '

Where did the mappings come from? What happened to tables and rows?
We use mappings in our formalism to avoid any explicit ordering of the at-
tribute names in the relation scheme. As we noted in the fast section, such an
ordering adds nothing to the information content of a relation.- We do not
want to restrict tupies to be sequences of values in ‘a certain ordet. Rather, a
tuple is a set of values, one for each attribute name in the relation scheme.*
The mapping: we defined are nothing more than correspondences of this
type. Now that we have taken the trouble of avoiding any explicit ordering in
relations, in nearly every case we shall denote our relations by writing the at-
tributes in a certain order and the tuples as lists of values in the same order..

In either case, it makes sense, given a tuple ¢, to discuss the value of ¢ on
attribute A, alternatively called the A-value of ¢. Considering ¢ as a mapping,
the A-value of ¢ is £(A). Interpreting ¢ as a row in a table, the A-value of ¢ is
the entry of ¢ in the column headed by A. Since ¢ is a mapping, we can restnct
the domain of z. Let X be a subset of R. The usual notation for ¢ restricted to_
X is t,x. We, in our infinite knowledge, shall confuse the issue and write this
testriction as #(X) and call it the X-value of t. Technically, t(A) and t({A })
are different objects, but in keeping with the confusing customs of relational
database theory, we often write 4 for the smgicton set {A }. We also blur the
distinction between t(4) and t({ A }), even though one is just a value and the
other is a mapping from A to this value. We assume there is some value A
such that t(@) = A for any tuple ¢. Thus ¢,(@) = t5(D)for any tuplest, and ¢,.

Example 1.2 Let ¢ be the tuple defined in Example 1.1. The FROM-value
of ¢ is t(FROM) = O’Hare. The {FROM, TO}-value of ¢ is the tuple ¢’
defined by ¢t '(FROM) = O’Hare, ¢ '(TO) = JFK. We shall denote such a tu-
ple as (O'Hare:FROM JFK:TO) or simply {O'Hare JFK) where the
order of attributes is understood.

We have been treating relations as static objects. However, relations are
supposed to abstract some portion of the real world, and this portion of the
world may change with time. We consider that relations are time-varying, so
“that tuples may be added, deleted, or changed. In Table 1.1, flights may be
added or dropped, or their times may be changed. We do assume, though,

*Actually, a tuple could be a multiset (a set with duplicates) of vaiues, lf domams for different
attribute names intersect.

4 Relations and Relation Schemes

that the relation scheme is time-invariant. Henceforth, when dealing with a
relation, we shall think of it as a sequence of relations in the sense already
defined, or, in some cases, as potential sequences that the relation might
follow, that is, possible states the relation may occupy. We shall discuss
restrictions on the states a relation may assume, although nearly all of these
restrictions will be memoryless: they will depend only on the current state of
the relation and not on its history of previous states.

’
1.3 KEYS

A key of a relation r on relation scheme R is a subset K = {By, B,, ..., B,,}
of R with the following property. For any two distinct tuples ¢, and £, in r,
there isa B € K such that ¢,(B) # 2,{B). That is, no two tuples have the same
value on all attributes in K. We could write this condition as #,(K) # t,(K).
Hence, it is sufficient to know the K-value of a tuple to identify the tuple
uniquely.

Example 1.3 In Figure 1.1, {NUMBER] and {FROM, TO} are both keys.

Let us formulate some notation for relations, schemes, and keys. Our con-
vention will be to use uppercase letters from the front of the alphabet for at-
tribute symbols, uppercase letters from the back of the alphabet for relation
schemes, and lowercase letters for relations. We denote a relation scheme R =
{A, A, ..., A,} by R[A,A; -+ A,], or sometimes A, A, -+ - A, when we
are not concerned with naming the scheme. (Another confusing custom of
relational database theory is to use concatenation to stand for set union be-
tween sets of attributes.) A relation r on scheme R is written n(R) or
r(AA, --A,). To denote the key of a relation, we underline the attribute
names in the key. Relation r on scheme ABCD with AC as a key is written
r(ABCD). We can also incorporate the key into the relation scheme:
R[ABCD). Any relation r(R) is restricted to have AC as a key.

Example 1.4 We can write the relation scheme for the relation in Table 1.1
as FLIGHTS [NUMBER FROM TO DEPARTS ARRIVES].

If we wish to specify more than one key for a scheme or relation, we must
list the keys separately, since the underline notation will not work. The keys
expl|c1t1) listed with a relation scheme are called designated keys. There may
be keys other than those listed; they are implicit keys. Sometimes we
distinguish one of the designated keys as the primary key.

Updates to Relations 5

Our definition of key is actually a bit too broad. If relation 7(R) has key
K',and K' € K S R, then K is also a key for R. For tuples¢; and ¢, inr, if
t(K'") # tK'), then surely t,(K) # t,(K). We shall restrict our definition
slightly.

Definition 1.1 A key of a relation r(R) is a subset X of R such that for any
distinct tuples ¢; and ¢, in 7, 1,(K) # #{(K) and no proper subset K’ of K
shares this property. K is a superkey of r if K contains a key of r.

The new definition of sup;rkey is the same as the former definition of key
We shall still use the old definition of key in designated key, that is,
designated key may be a superkey.

Example 1.5 In Table 1.1, {NUMBER} is a key (and a superkey), so
{NUMBER, FROM} is a superkey but not a key.

There are some subtleties with keys. As we mentioned in the last section,
we consider relations to be time-varying. For any given state of the relation,
we can determine the keys and superkeys. Different states of the relation may
have different keys. We consider relation schemes, though, to be time-
invariant; we would like the keys specified with relation schemes not to vary
either. Thus, in determining keys for a relation scheme, we look acjoss all
states a relation on the scheme may assume. Keys must remain keys for all
permissible data.

Example 1.6 In Table 1.1, {FROM, TO} is a key for the refation.
However, it is likely that there could be two flights between the same origin
and destination, although they would undoubtedly leave at different times.
Hence { FROM, TO, DEPARTS} is a key for the relation scheme FLIGHTS.

We shall mainly concern ourselves with keys and superkeys of relation
schemes, thinking in terms of all permissible states of a relation on the
scheme. What is and is not a key is ultimately a semantic question.

1.4 UPDATES TO RELATIONS

Now that we have relations, what can be done with them? As noted, the con-
tent of a relation varies with time, so we shall consider how to alter a relation.
Suppose we wish to put more information into a relation. We perform an add

6 Relations and Relation Schemes)

o :
operation on the relation. For a relation r(4,4, --- A,), the add operation
takes the form

ADD(r; A, = d;, Ay = ds, ..., A, = d,).

Example 1.7 Call the relation in Table 1.1 sched. We tight perform the
update

ADD(sched; NUMBER = 117, FROM = Atlanta, TO = Boston,
DEPARTS = 10:05p, ARRIVES = 12:43a).

When there s an order assumed on 'the attribute names, the shorter ver-
sion
ADD(r;d;, d;, ..., dy)

suffices.

Example 1.8 The short version of Example 1.7 is
ADD(sched; 117, Atlanta, Boston, 10:05p, 12:43a).

The intent of the add operation is clear, to add the tuple described to the
relation specified. The result of the operation. might not agree with the intent
for one of the following reasons:

1. The tuple described does not conform to the scheme of the specxfxed

. relation.
2. Some values of the tuple do not belong to the appropriate domains.
3. The tuple described agrees on a key with a tuple already in the relation.

In any of these cases, we consider ADD(r; dy, d,, ..., d,) to return r un-
changed and in some manner indicate the error.

Example 1.9 If sched is the relation in Table 1.1, then

ADD(sched; NUMBER = 117, FROM = Atlanta, TO = Boston,
DATE = 4 March)

is disallowed for reason 1 above. The operation

