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Preface
Organization

This volume contains a collection of papers presented at the Conference on
Numerical Methods for Non-linear Optimization, which was held at the Uni-
versity of Dundee (Scotland), from 28th June to st July 1971. The choice of
Dundee was not a coincidence. The Science Research Council had generously
decided to give considerable financial support to the University of Dundee for
the purpose of supporting a symposium on the theory of Numerical Analysis
during the period September 1970 to August 1971. Many pure and applied
mathematicians, numerical analysts etc. visited Dundee, and two major
gatherings were organized: a Research Conference on Numerical Analysis
and the above named Conference (the idea originated from the Mathematics
Department in Dundee), which fitted very well into the framework of the
‘Numerical Analysis Year’.

The Dundee Conference on Numerical Methods for Non-linear Optimiza-
tion was the successor to the Conference on Optimization (sponsored by the
British Computer Society and the Institute of Mathematics and its Applica-
tions), held in March 1968 at the University of Keele (England). It was also
confined to the area of non-linear, unconstrained and constrained optimiza-
tion with the emphasis on the numerical aspects; methods for integer, linear
programming have been left out of consideration. The papers of the Keele
conference have been edited by R. Fletcher, and published by Academic Press,
London, 1969, under the title “Optimization”.

The Programme Committee for the Dundee Conference consisted of
M. J. D. Powell (Atomic Energy Research Establishment, Harwell; Chairman
of the Committee), G. A. Watson (University of Dundee; secretary of the
Committee), M. R. Osborne (Australian National University, Canberra;
visiting professor at the University of Dundee), and the editor (Philips Re-
search Laboratories, Eindhoven, The Netherlands; temporarily at Mullard
Research Laboratories, Redhill, Surrey). We have cooperated in a most
pleasant atmosphere. An encouraging factor was the rapid and favourable
response of the invited speakers: P. Wolfe (IBM, New York), R. W. H.
Sargent (Imperial College, London), G. P. McCormick (The George Washing-
ton University, Washington), E. M. L. Beale (Scientific Control Systems,
London), R. Fletcher (Atomic Energy Research Establishment, Harwell), J.
Abadie (Electricité de France, Paris), and J. B. Rosen (University of Minnesota,

Vit g



viii PREFACE

Minneapolis); in addition M. R. Osborne and the editor agreed to present a
survey on their favourite subject.

The programme was finally composed during a meeting in Dundee, on 5th
and 6th May 1971. This completed the task of the Programme Committee.
The local organization was further carried out by G. A. Watson assisted by
many others too numerous to mention by name, both academic and secretarial
staff and students of the Mathematics Department at the University of Dundee.
They gave all the time and effort that was needed to ensure a well runconference.
We thank all of them for the smooth organisation and for their excellent
hospitality.

Outline of the Present Volume

Surveying the contents one will find that the contributions fall into a few, dis-
tinct categories.

First, there are the papers dealing with methods for unconstrained
optimization. The theoretical aspects are further explored by M. J. D. Powell,
J. B. Dennis, C. G. Broyden and M. P. Johnson, and E. M. L. Beale; the au-
thors are mainly concerned with the successful variable-metric and conjugate-
gradient methods. Numerical experiments to compare algorithms for uncon-
strained optimization are presented by R. W. H. Sargent and D. J. Sebastian,
D: M. Himmelblau, J. M. Parkinson and D. Hutchinson, G. Schrack and N.
Borowski, and L. C. W. Dixon. It is interesting to nofe that some of the au-
thors devote considerable attention to the non-gradient methods. In the last
few years this important class of methods has been somewhat neglected; at
least, this is our impression if we inspect the leading journals and compare the
number of papers on this subject with the .abundant literature on gradient
methods.

Problems. of non-linear least squares and curve fitting are presented by
M. R. Osborne, M. Davies and I. J. Whitting, and S. T. Loney. These prob-
lems have a wide range of applications, and the numerical methods for solving
them are so closely connected with optimization methods that we gladly re-
ceived the papers for presentation at the conference.

An appealing direction for future research is the design of methods to find
global minima of problems that may have local, non-global minima. This
volume contains three papers on this subject presented by G. P. McCormick,
U. Ueing, and F. H. Branin and S. K. Hoo. Particularly the lively presentation
by Branin should be mentioned here; it was one of the highlights of the
conferv..wc.

Lastly, the reader will find a collection of papers on constrained
optimization. Methods for quadratic programming are discussed by D.
Goldfarb and A. S. Gongalves, and P. Hansen presents a quadratic-program-
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ming method for the particular problem where the variables are restricted to
the values 0 and 1. Methods tailared to problems with linear constraints are
surveyed by R. Fletcher. Surprisingly enough, there is only one other paper, by
J. B. Rosen and J. Kreuser, that deals extensively with methods of this kind.
The Programme Committee expected more papers on this subject : in the litera-
ture these methods are often considered as effective tools if the (majority of
the) constraints are linear. A broad treatise on complementary algorithms for
programming problems with an infinite number of constraints is given by U.
Eckhardt. Finally, keen interest is still being shown in the penalty-function
approach for solving constrained minimization problems. This volume con-
tains seven papers on this subject, presented by F. J. Gould, R. Mifflin, R.
Fletcher, Shirley Lill, M. R. Osborne and D. M. Ryan, M. C. Biggs, and by
the editor.

Asin many other fiélds of scientific research there is an astonishing prolifera-
tion of names and terms. During the conference this was alluded to by F. H.
Branin, who suddenly interrupted his talk to ask his audience a teasmg ques-
tion; an immediate answer was given by D. J. Wilde.

Branin: By the way, everybody seems to know who Newton is, but who is

Raphson?
Wilde: He is Newton’s programmer, I guess.
Branin: That is the best answer I have ever heard.

Presentation of Numerical Results

The literature on optimization has shown a regrettable lack of uniformity in
the presentation of numegical results. When the number of function evaluations
is recorded, it may include the gradient evaluations as well; it is not always
obvious whether the derivatives were obtained by numerical differentiation or
not; the accuracy required a priori is sometimes not mentioned so that one
does not know what is understood by a solution to a given test problem; the
execution time is often omitted, although this quantity might be of interest if a
number of algorithms are compared on the same computer. The Programme
Committee therefore suggested some guidelines to the contributors, and it is
gratifying that many authors have followed the recommendations. Neverthe-
less, there are several inherent difficulties which should be mentioned here.
The number of function, gradient, and possibly Hessian-matrix evaluations,
sometimes lumped together in the number of equivalent function evaluations,
is a machine-independent measure of efficiency. However, it is an unsatisfac-
tory yardstick for comparing optimization algorithms, since it does not ac-
curately inform the reader of the total effort necessary to solve a given test
problem. The gradient projection methods, for instance, will entail many time-
consuming array manipulations which are often not negligible with respect to
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the function and gradient evaluations. Execution times and the computer used
could be mentioned in order to provide a basis for overall comparison. And
this is also a reasonable basis: the ultimate purpose of many investigations in
this field is the development of algorithms that are faster than the existing ones.
We cannot ignore the following problems, however.

First, computers with multi-programming and time-sharing facilities do not
always inform the user of the execution time for the total job or, which is even
more desirable, for specified parts of the job. Several contributors (Dixon,
Biggs) have expressed their concern about this state of affairs, and we deplore a
development that might destroy an important criterion for the comparison
of algorithms.

Even if the computer used and the compiler are specnﬁed a comparlson of
various optimization algorithms on different computers remains cumbersome.
To our knowledge, only one such attempt, with the exécution time as perfor-
mance criterion, has been made. The study was carried out by Colville (see
A. R. Colville, “A comparative study on non-linear programming codes”. IBM
NYSC Report No. 320-2949, June 1968), and his report gives an impressive
list of specialists in the field of optimization cooperating in this project. We
appreciate the attempt, but we have found many deficiencies in the report.
The standard timing programme (the basis for the comparison) is lengthy and
not very representative; basically, it consists of a number of arithmetic opera-
tions and array manipulations (in the proper balance ?), but subroutine calls
are practically missing. Furthermore, a detailed account of the number of
function and derivative evaluations is not given, and the accuracy of the cal-
culated solutions is sometimes rather poor.

Nevertheless, we feel that the comparison of optimization algorithms on the
basis of execution times is very important. The papers by Himmelblau and
Biggs, for instance, show that the difference in execution times is sometimes
not very striking, even if there are considerable variations in the number of
function and derivative evaluations. In those circumstances the properties of
the computers and compilers cannot be neglected, and it is our conviction that
significant progress in optimization methods can only be made if more attention
is given to these aspects, as well as to the mathematical approach.
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1. Some Properties of the Variable Metric Algorithm

M. J. D. PoweLL
Mathematics Branch, Theoretical Physics Division,
U.K.A.E.A. Research Group, Atomic Energy Research Establishment,
Harwell, England

Summary

The variable metric algorithm for calculating the least value of a function F(x)
is usually successful in practice, but it has not been analysed theoretically,
except when F(x) is a uniformly convex function. Therefore, in this paper some
preliminary theorems are given, that require only that a level set {x|F(x) <
F(xM)} is bounded, and that F(x) has bounded second derivatives. In this
paper we are un~ble to show convergence in general, but an interesting
corollary of the theorems is that we can prove convergence if F(x) is convex,
whereas the previous theorems depend on uniform convexity.

1. Introduction

To solve the problem of calculating on a computer the least value of a function
F(x,x5,...,%,) = F(x), say, the variable metric algorithm (Davidon, 1959;
Fletcher and Powell, 1963) is often used, and it is usually successful. This
algorithm is described briefly in Section 2, and some of its properties, taken
from previously published papers, are given in Section 3. However, there are
no theorems that explain the success of the algorithm; except in the special
case when F(x) is a uniformly convex function. So his paper describes some
preliminary results that depend on much less restrictive conditions on F(x).

The algorithm is iterative, and, given a starting point xV, it generates a
sequence of points x® (k = 1, 2, ...), that is intended to converge to the point at
which F(x) is least. The vector g® is defined to be the gradient of F(x) at x®,

The conditions on F(x) that we impose are that the level set {x|F(x) <
F(x1)} is bounded, and that F(x) has bounded second derivatives. The nota-
tion G(x) stands for the second derivative matrix of F(x) at x, and we let the
bound be the inequality

G| < A (1)
1
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Throughout this paper the vector norms are Euclidean, and the matrix norms
are induced by the Euclidean vector norm.

Most of the given results are derived from the doubtful conjecture: ‘There
exist functions F(x), satisfying the conditions of the last paragraph, for which
the sequence of numbers ||g®| (k = 1,2,...) is bounded away from zero’. We
would like to show that this conjecture is false, because then it would follow
that the limit points of the sequence x* (k =1,2,...) include at least one
stationary point of F(x). We have used the term stationary point, instead of
local minimum, because Wolfe (1971) has found a function for which the
variable metric algorithm converges to a saddle point.

Therefore, in Section 4 we suppose that for some positive constant c the
inequality ||g®| > ¢ (k =1,2,...) holds, and we deduce a number of conse-
quences of this hypothesis. Some of these deductions are surprising, but un-
fortunately we have not been able to show that they are contradictory.

However, in Section 5 we note that the deductions are contradictory if we
include the extra condition that F(x) is convex. Thus we prove that the
variable metric algorithm converges for convex functions, whereas the previous
theorems (Powell, 1971) depend on uniform convexity.

In Section 6 a different method of analysis is used, and it is shown that if
F(x) is a function of only two variables, then the sequence x* (k=1,2,...)
cannot converge to a point at which the gradient of F(x) is non-zero.

Finally, in Section 7, there is a discussion of our theorems, and it is pointed
out that they are relevant to a number of published algorithms (Dixon, 1971).

2. The Variable Metric Algorithm

The kth iteration of the algorithm calculates the point x**! from the point
x®, It depends on a positive definite matrix H®. To begin the first iteration,
H" is frequently set to the unit matrix, but any other positive definite matrix
may be used instead. As well as calculating x**?, the kth iteration calculates

the matrix H®*D, ‘
If g® = 0 the iterative process is terminated. Otherwise the point x**1 is

defined by the formula

x&+HD — x® _ & &) g("), (2)
where A® is a multiplier. The value of A%’ is obtained by considering the
function of one variable

$(X) = F(x® — AH® g®), 3)
and ideally A®® should be the value of A that minimizes ¢(2) subject to A > 0.

Because H® is positive definite, and because the level set {x|F(x) < F(x"")}
is bounded, A® is positive and finite. If it happens that more than one value of
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A minimizes ¢(}A), we remove the ambiguity by letting A*’ be the legst positive
value of A that minimizes ¢(A).

However, in practice it is impossible to calculate A*’ precisely, and it seems
to be a good strategy to tolerate rather large errors in the value of A®, But in
this paper we presume the ideal case where A’ does minimize ¢(A) subject to
A=0.

The matrix H®**P is defined by the formula

H® Y(k) .{(t)T H® §® §OT

H®D=H® — (Y, H® y®) + (&%, y®y ’ @
where 8% and y® are the vectors
§K — x(k+D) _ g
Yo =gk g"",} (s)

and where the superscript T distinguishes a row vector from a column vector.
When equations (2) and (4) have been applied the (k + 1)th iteration is begun.

3. Properties of the Variable Metric Algorithm

In this section we summarize the properties of the variable metric algorithm
that have been published already, and that are required in later sections.

The numbers (8®,y™®) are positive, all the matrices H® (k = 1,2,...) are
positive definite, and the definition of A*’ implies the equation

(g**D,8®) =0, k=12,..), ©

(Fletcher and Pdwell, 1963). Therefore, because 8% is a positive multiple of
~H®g® we have the identity

(B, Y®) < [501(@®, HO )| HOg®). ™
The determinants of the matrices H® satisfy the recurrence relation
(8(”, Y(k))
det (H(H'”) = det (H(k)) W, (8)
(Pearson, 1969).
The equation
1 1 1

€)

(g(k+l), H(k+l)g(k+l)) = (g(k), H(k)g(k)) + (g(k+l), H(k) g(k-H))

holds, and, because H® is positive definite, it implies that the sequence
(g®, H®g®) (k=1,2,...) decreases strictly monotonically (Wolfe, 1969,
private communication).
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Defining I'™® to be the inverse of H®, we have the recurrence relation

T . !
Iw(g.;.[) - Y(k) 8(!) P(k) 1_ —8—(1-) Y(k)'r Y(k) Y(k)T ’ (]0)
(8“), Y(k)) (8(&)’ Y(k)) (8"‘), Y(t))
(Fletcher, 1970).
The trace of I'**D js related to the trace of I'® by the equation
lg** P2 - 181 | Iy®)?
Tr(I*D) = Tr (I'®) + @, TP g®) + &Py’ (11)

(Powell, 1971).

If F(x) is uniformly convex, then the sequence x® (k =1,2,...).converges
to the point at which F(x) is least (Powell, 1971).

The condition (1) implies the inequality

ly®l < MI8®),  (k=1,2,...). (12)

This result is not special to the variable metric algorithm, but it follows from
the definition of a derivative. It is proved, for instance, in Section 3.2.3 of
Ortega and Rheinboldt (1970).

4. Consequences of a Conjecture

Although the variable metric algorithm usually works well, in this section we
consider the conjecture that for some functions F(x) there exists a positive
constant ¢ such that :
Ig®l=e (k=1,2,...). 13)
We deduce a number of lemmas from inequality (13) that I hoped would
deny the conjecture, but the truth of the conjecture is still an open question.

To prove these lemmas we introduce two more definitions. We et 4 be
the diameter of the level set {x| F(x) < F(x‘")}, so we have the inequality

8% <4, (k=1,2,...), (14)
and we let m be the bound
m=suplg®|, (*k=12,...). (15)
This bound exists because of condition (1) and because the points x* belong
to a bounded set.

Lemma 1

There exist positive constants, ¢, and c, say, such that the trace of I'®*D js
bounded by the inequalities

. ko fy@)? <Tr* ) < ly)? a6
' 2. B * 2, F oy
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Proof
Equations (9) and (11) imply the identity

Tr(F*+Y) = Tr(I'™) + Ig**P)2 — ¢? lg®@|? -
=Tr (™D, H*+D g®+D) - (g(k)’ H®g®)

g0 yOF

- @™, H® gk+D) 7 (§® y®) s an

and we apply this equation k times to express Tr(I"**!) in terms of Tr(I'").
Thus we obtain the relation

(k+1)12 __
PPN | e S | ks
(g(H—l), H(H»l)g(k#-l)) (g(l)’ H(l)g(l))

k U+Dj2 c? (N2
T Z (— ( ("frn Jm G+D) + (5"(7) "u)))
=1 g 4 g IY

3 Tr(pm) .\ [lg"‘“’llz —c? k "YU)"z
(gu«m’ H®&+D g(k+l)) £ (5(1)’ Y(1))’

(18)

the last line being a consequence of inequality (13). Now because the trace of
a matrix is equal to the sum of its eigenvalues, and because I"**1 is positive

definite, we infer the inequality

. "g(t+l)"2

< Tr(I*+D), (19)

(g(k+l)’ H(l+l)g(k+l))
and therefore expression (18) implies the bound
"g(hﬂ)"Z — “ Y(J)"Z
Tr(F*+0) < Tr (I'D) + W e o) + Z ooy @
which is equivalent to the condition

g"‘“’ 2 )2
Tr(I*+)) < " I (T (1"(1))_,_2(8"; "U)) 1)

Because |g*+!| is bounded above, the right-hand inequality of expression (16)
is proved.



