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Preface

In this book I have attempted to integrate some of the basic ideas of network
and system theory, signal analysis and processing, and control systems and simuia-
tion in a fashion that will be accessible to undergraduate students taking a second
course in networks or systems. The approach to time-domain and frequency-
domain analysis is unified.

The two methods are presented not as different approaches, but as essentially
the same approach employing different bases for input signal representation. Such
a viewpoint is very effective in practical terms and has philosophical appeal. Thus,
the frequency transforms (Fourier and Laplace) are introduced not as mechanical
operators which aid in solving integrodifferential equations, but as tools for repre-

_senting a signal as the sum of exponential signals with complex frequencies. The
response of a linear system to any input signal is seen as the sum of the responses
of the system to various exponential components of the input. This approach not
only gives a deeper appreciation of interaction of signals with systems, but also
allows one to integrate smoothly the basic concepts of signal analysis and process-.
ing with those of system analysis. It also unmasks frequency-domain analysis to
reveal that it is in fact a time-domain analysis in disguise.

In the development of discrete-time systems, discrete-time signals are intro-
duced first. The analysis of discrete-time systems then unfolds along lines similar
to those in continuous-time systems, taking advantage of the parallel that exists
between the two types of systems. Hybrid or sampled-data systems are then
treated as special cases in which the techniques of discrete-time analysis can be
applied conveniently. I believe that this approach greatly facilitates the learning

-of discrete-time systems as well as sampled-data systems.

The concept of the state of a system is introduced in the first chapter. Identi-
fication of the initial state with the initial conditions immediately dispels the veil
of mystery surrounding the concept of the state and helps to clarify the meaning of
the state to the student. The system response is then discussed in terms of zero-
input and zero-state components. '

As in all my previous books I have used mathematics not so much to prove
abstract axiomatic theory, as to enhance physical understanding. Logical motiva-
tion is provided for introducing new concepts. Whenever possible, theoretical re-
sults are interpreted heuristically, supported by carefully chosen examples and il-
lustrations. Written primarily for juniors and seniors, the material included is, I

- believe, the absolute minimum that a prospective graduate of electrical engineering
or systems engineering must acquire. The book is self-contained, requiring only a
modest background in calculus and in the elements of network theory or dynamic
systems. It can therefore be used effectively for self-study by practicing engineers.

ix



b . i . Preface

Thanks are due to Professors J. B. Cruz, W. D. Thayer, M. E. Van Valken-
burg, and Mr. J. M. Elfelt for” several suggestions. Discussions with Professor
W. H. Huggins were cspecmlly helpful. ' A. Alonso and D. Sousa assisted in proof-
reading. Thanks are also due to John Wiley & Sons for allowing me to reproduce,
certain material from my earlier works.

Notes to the Instructor

The entire contents of this book can be covered'in about 90 classroom hours.
By judicious choice of topics, it can be used for a course lasting anywhere from
30 to 90 hours. It is therefore suitable as a text for 'a course lasting for one to
three quarters or one to two semesters.

Linear Systems: For a course on signals and systems (or systems theory), any
one of the following combinations of chapters should be appropriate.

/b(b(/c)
1—2——35445—6—7
\74\6 ’
N>

Chapter 4 gives two interpretations of the frequency domain: (1) the time-
domain interpretation and (2) the conventional or transform interpretation. The
instructor may omit the former interpretation (Secs. 4.1-4.8) without experiencing
much discontinuity in the flow of the discussion. This, however, is not recom-

“mended unless there is no way of covering the desired material in a given time
period.

Control Systems: The book can be used effectively as a text for a 30- to 45-hour

course on control systems. For this purpose the following material is suggested.
Chapters 1 and 2, part of Chapter 4 (Secs. 9~13, and 15-17 only), Chapter 5, and

Appendixes A-F.
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Introduction to SyStems

1.1 INTRODUCTION

The dictionary gives several possible meanings of the word system. One of
them is ““A set of arrangement of things so related or connected as to form a
unity or organic whole, as a solar system, irrigation system, or supply sys-
tem.” This rather broad definition includes all physical .as well as nonphysical
systems.  Electrical, mechanical, electromechanical, hydraulic, acoustic, and
thermal systems are examples of physical systems. Economic systems, political
systems, traffic control sygtems, and industrial planning systems are examples .of

socioeconomic systems. The socioeconomic systems are made up of various com- .

ponents and their interactions. These are no more or: less of systems than physical
systems. As a result, the system theory applicable to physical and a class of non-
physical systems is emerging. Attempts are being made to apply system theory to
such socioeconomic problems as education, transportation, public and private
administration, and economic development. In this book we shall be concerned
with physical systems in general, and with clectncal mechanical, and electro-
mechanical systems in particular.

Each system performs some desired function (response or outputs) for a given
set of driving functions (inputs). In electrical systems the driving functions are
generally in the form of voltage and current sources, and the response will be volt-
ages or currents at.certain locations. For mechanical systems the inputs may. be
forces (or displacements), and the response may be displacement or velocity at
some point. For a given system there may be several inputs (driving functions)
acting simultaneously, and there may be several outputs (responses) of interest.
Before defining any relationship betwéen inputs {driving functions) and outputs
(responses), let us consider a simple mechanical system consmtmg of 2a mass M
which is acted upon by a force f as shown in Fig. 1.1. .

In this case the driving function (input) is f(f) and the output (responsc) is
the velocity 2. According to Newton’s law, for a constant mass M the force f and
the velocnty vof the mass are related by

. dy
f—ME
or

- -Iﬁff(f)df (1.12)

5505847
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2 1 Introduction to Systems

|
1

x (t,) X

Figure 1.1

The velocity » is the response to the input force f. The velocity at any instant ¢ is
therefore the result of force f acting on M in the entire past. Hence the limits of
integration in Eq. 1.1a are from — o« to¢. Thus

o(1) = ‘AIZ i fr) dr (1.1b)
0 !
=1 f f(r)dr + — f(r)dr (1.1c)

From Eq. 1.1b (by letting ¢t = 0) the first term on the left-hand side of Eq. 1.1c is
seen to be v(0). Hence '

(1) = 2(0) + % fo f(7)dr (1.1d)

Let us discuss the implications of Eq. 1.1d. From Eq. 1.1b, it is obvious that the
velocity v(¢) of the mass at any instant { can be computed if we know the force that
acted upon the mass in the entire past (—«,?). In practice, however, it is im-
possible to keep record of force acting on a mass over the entire history of its
existence. In such case the use of Eq. 1.1d proves very attractive. Suppose we know
the force from some moment { = 0 onward we can still calculate »(¢) for ¢t > 0
provided »(0), the initial velocity (velocity at ¢ = Q) was known. Thus #(0) has all
the relevant information about the entire past of the forces acting on M, that we
need to calculate ¢(¢) for { > 0. The velocity »(0) represents the value of the
velocity at the initial moment / = 0 and is generally referred to as the imitial condi-
tion. In the present case we arbitrarily chose the initial moment to be ¢ = 0. We
can, however, use t = ¢, as the initial instant.
Eq. 1.1d can be easily generalized as

() = v(to) + % j;lf(r) dr (1.1¢)

In the present situation we conclude that the response (velocity) for ¢ > £, is a
function of the initial condition ¢(¢ ) and the input /(¢) for ¢ > ¢,. This fact may be
expressed as

o(t) = plote), f(D], 124 (1.2)

This result is true in general. A response of a system for ¢ > , is a function of the
initial conditions at ¢ = /, and the input(s) f (¢) for ¢ > ¢,. :



1.2 State-of a System: The Vital Key 3

In the present problem we needed only one initial condition. However, in
general several initial conditions may be necessary. Consider again our problem of
mass M acted upon by a force f. Let us determine the position x of the mass at
some time {. We have :

& _,
dt
.Hence
x(t) = f v(r) dr (1.3a)
0 A t .
= f o(t)dr + f o(r) dr " (1.3b)
o 0

From Eq. 1.3a (by letting ¢ = 0), the first term on the right-hand side of Eq. 1.3b is
seen to be x(0). Hence ' '

x(t) = x(0) + _( v($) d¢ (1.3¢)

where { is the dummy variable of integration. Substituting Eq. 1.1d in Eq. 1.3c we

obtain
¢ $
x(0) + l [v(0)+ IH ./; f(r)a'f]d{.,

¢t
x(0)+u(0)z+x’l-_[ _[f(r)d‘rdi‘ (1.3d)

x(t)

It is obvious from Eq. 1.3d, that if the input force f(¢) is known from ¢ = 0 onward,
then to find the position x(¢) for ¢ > 0, we need two initial conditions x(0) and
v(0). Thus '

x(t) = ¢[x(0),2(0),f(0)}, ¢20

Note that the initial instant is arbitrarily chosen at ¢ = 0. The results can be gen-
eralized for any value of the initial instant.

1.2 STATE OF A SYSTEM: THE VITAL KEY

The initial conditions at some ¢ = ¢, collectively are called as the state of the

system at { = 4. Thus if a system has 7 initial conditions x,(4), x2(%), . ..,

x, (o), the state of the system at ¢ = {, (initial state) is given by x, (), x2 (%),
..., %,(ty). We may say that the state at some instant #, contains all the relevant
information of the past history of the system that is needed to obtain the response
for ¢ > t, when the input is given for ¢ > ¢. For the mass-force system in
Fig. 1.1, the state of the system at ¢t = ¢ is given by x(4) and v (¢ )-

The state of a system at any time 1y is the smallest set of numbers x\(ty)}, x2(lo), . ..,
x, (ty) which is sufficient to determine the behavior of the system for all time ¢ > t, when the
input to the system is known for t > (.




4 , 1 Introduction to Systems

"In general there may be several inputs applied simultaneously at various
points in a system and there may be several variables of interest which will be con-
sidered as response {output). For simplicity, we shall first consider the case of
single-input, single-output system and then later extend the discussion to a general
case of multiple-input, multiple-output system. A response y(¢) for ¢ > { of a sys-
tem is a function of the state of the system at some initial instant ¢{ = f, and the
input f(¢) for £ > t,. This can be expressed as

y() = olxi(to), x2(to)s- - s xa(l), ()] £ 2 1o (1.42)

For the sake of convenience the initial state at { = t; represented by numbers
x3{to), x2(to), - . ., xa(ts), will be denoted by {x(#)}. Using this notation, Eq. 1.4a
can be expressed as -

y(@0) = olix)L L t2 1 : (1.4b)

Figure 1.2 shows the block diagram representation of a system. A system is

f2) ¢ ‘ - y(t)

y(t) = el|x(to)} /(0]

Figure 1.2

characterized by input(s), output(s) and the functionalsblock diagram. The func-
tional block diagram should be labeled by the input-output relationship (such as
in Eq. 1.4b) for complete characterization of the system. ‘

At this point we make an important observation. It was seen that the re-
sponse y(¢) at any instant { > {, can be determined from the knowledge of initial .
state {x(fp)} and the input f(¢) over the interval (¢,,¢). Let us consider the output
yatt = to. From the above discussion it is evident that y(f,) can be determined
from the knowledge of the initial state {x(¢)} and the input f(f) over the interval

' (to,%). The latter is f(t,). Hence the response at any instant is determined com-
pletely from the knowledge of the state of the system at that instant (and the input
at that instant). This result is also true for multiple-input, multiple-output sys-
tems. Every output (response) at any given instant ¢ is completely determined by
the state of the system (and the inputs) at that instant. Therefore the state of a
system at some instant tells us everything about the system at that instant. It is
evident that the state of a system is the single most important attribute of a system.
It is the vital key to the system. '

As an example, consider the electrical network shown in Fig. 1.3. We can
easily show that if the capacitor voltage x; and the inductor current x, are known
(along with the input) at any instant, then all voltage and currents in this network
at that instant are known. From Fig. 1.3 it can be seen that

Ug, =f(t) - X
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Figure 1.3
. 1 1
lR1 =‘R—] I)Rr: R—][f(t) - X1]
URZ = X
ikz = Exl

. . . 1
1c=!R,—lnz—xz=*R}—{f(‘)—x1]—'§-x1 -
1 ’ 2

(1.5)

Ve = Xy
lry = X2

UR3 = R;X;

Up = Upy, — Ury = X1 — R3x,
il. = X2
. . 1
iy = iny = 7 /1) = x1]
1
y = f(t)

It can be seen that if we know the capacitor voltage x;, the inductor current
x,, and the input f(¢) at any instant, all the voltages and the currents in the network
at that instant are determined. Consequently the state of this network at any
instant tp is given by x, (¢ ), x2(ts). For electrical networks, in general, it can be
shown that all voltages, and the currents at any instant are determined by the
values of all inductor currents and all capacitor voltages (and the inputs) at that
instant. Hence in electrical network the state of,a system at any instant is given
by all inductor currents and all capacitor voltages. It will also be seen that in
mechanical systems all forces, displacements, and velocities at any instant are de-
termined from the knowledge of positions, and velocities of all junctionst (along
with inputs) at that instant. Hence the positions and velocities of all junctions
represent a state of a mechanical system. ,

The concept of a state is very important. As the term implies, state of a
system represents its position or status.

tA junction is the point where two or more elements are connected.
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STATE OF A SYSTEM IS NOT UNIQUELY SPECIFIED

At this point we shall note that the state of a system can be specified in several
ways. In the force-mass system (Fig. 1.1), for example, we may specify the state
of a system by x(#,), 2(% ), or we may define new variables w, and w, as

wy = ayx + ap? (1.6)

w; = anx + anv

Solving these equations simultaneously, we can express x and v in terms of+
wy, and w,. Therefore if w,, and w, are known x and v are also known. Hence the
response of the system can also be obtained from the knowledge of the input f{¢)
and the initial conditions w, (f;) and w; (¢ ). Therefore, by definition w, (), w; (&)
also specify the state of the system.

In the electrical network shown in Fig. 1.3, one can easily show that the volt-
ages and the currents in all the branches at any instant are determined from the
knowledge of vz, and vg, (and the input) at that instant. Hence vg, and g, also
specify the state of the system. Other possible sets of variables which can specify
the state of this network are (i,0.), (ic, o), (r),2L), (ic,0.), and (ic, v4,)- It is
left as an exercise for the reader to show that these sets can specify the state of the
system in Fig. 1.3.

1.3 CLASSIFICATION OF SYSTEMS
The systems can be broadly classified into following categories: }

Linear and nonlinear systems. )
Constant-parameter and time-varying-parameter systems.
Instantaneous and dynamic systems.

Lumped-parameter and distributed-parameter systems.
Continuous-time and discrete-time systems.

SIE SN

We shall now discuss the nature of these classifications. To begin with, we
shall consider the single-input, single-output system and then extend the results
to a general case.

1. LUINEAR AND NONLINEAR SYSTEMS

Before defining a linear system it is necessary to understand the important
concept of linearity.

Linearity Concept

The reader is no doubt familiar with the rudimentary notions of linearity.
Broadly speaking, the linearity property implies two important concepts (i) Aomo-

1+This is true provided a,a5 — aj5a = 0. This condition is implicit here.

}There are few more classifications such as (1) discrete-state and continuous-state sys-
tems, and (2) deterministic and probabilistic systems. These classes, however, are beyond
the scope of this book and will not be considered.
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genaity and (ii) superposition. Homogeneity property implies that a k-fold increase in
the input causes a k-fold increase in the output for any value of £ (Fig. 1.4a). If
f(1) is the input and y(¢) is the corresponding response, then ky(t) is the response
when the input is f( t) This fact may be represented as

If '

£y =y
then - 7
k) = k() | S

The superposition property states that if there are several inputs (or causes) acting
on a system, then the total response of the system due to all the inputs (causes) can
be determined on installment basis by considering only one input (cause) at a time
and by assuming the remaining inputs (causes) to be zero. The total output is the
- sum of all such output components computed by considering one input (cause) at a
time. This property may be expressed as follows. If y,(¢) is the response of a system
to the input (cause) f, (t) and y, (¢) is the response of the same system to the input
(cause) f;(¢), then if both inputs are acting simultaneously—that is, when the input
is fi(t) + f2(t)—the response is y;(t) + y,(f). This property may be expressed as

£ty y(t) kf(t) ky(2)

(a) Homogeneity property

0 ) ¥i (2)
fi)+f200) Yi(t)+y2(t)
i ——] ¢ —
f2(0) y2 (1)
et '¢ ——tp——

(b) Superposition property

fHi() yi{t)

— ¢
kL) + ()] . k [y () +ya(2)]
# — 1] | ——

fa(?) ’ y2(t)

— ¢ b

(c) Linearity property (homogeneity + superposition)

Figure 1.4
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follows (see Fig. 1.4b):
If

H@® — 310
S (8) = y2(0)
then
L) + fo(t) = () + 32(8) (1.8)

We can combine both the properties (Eqs. 1.7 and 1.8) into one equation as
follows (see Fig. 1.4c¢):
If

L) = 3@
f2() = »(8)
then

KL (@) + (0] = Kly1(6) + y2(D)] (1.9)

Note that Eq. 1.9 embodies the essence of both equations 1.7 and 1.8. Hence

Eq. 1.9 represents the linearity property (homogeneity + superposition).

Definition of Linear and Nonlinear Systems

We shall now use the linearity concepts to define a linéar system. As observed
earlier, the output of a system depends upon not only the input f(¢) but also the
initial state {x(f,)}. We may view this as if the output (response) depends upon two
different inputs or causes; {x(f)} and f(t). Consequently for a linear system we
must demand that the output (response) should be given by a sum of two compo-
nents, arising because of the two different causes. The component due to each
cause is computed by assuming that only that cause is present and the other cause
is zero. To be specific, the output.of a linear system should be given by a sum of
two components (i) the output of the system with the given initial state {x(s)} and
with zero input—that is, f(t) = O0°(zero-input component); and (ii) the output of the
system with the given input f(¢f) but with zero initial state—that is, [x(f,)} = 0
(zero-state component). Thus the response y(¢) can be expressed as

y&) = y() + y() (1.10)
IR —— — et
total 2¢ro-input zero-state

P L P

where y,(f) (the zero-input response) is a function of the initial state only and
y,(t) is a function of the input f(£) only. This property of a system which allows us
to separate the components due to the initial state and the input is called the de-
composition property. Thus the output of a linear system can be separated into two
components. The first component (zero-input component) is obtained by letting
the input be zero. This component of response is caused entirely by the initial

conditions or the initial state. The second component (zero-state component) is -

obtained by letting the initial state be zero. This component of the response results
due to the input alone. The decomposition property allows us to evaluate the two
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