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1 Introduction and 'Summary

This monograph explores the idea of learning efficient strategies for solving
problems by searching for macro-operators. A macro-operator, or macro for short,
is simply a sequence of operators chosen from the primitive operators of a problem.
The technique is particularly useful for problems with non-serializable subgoals,
such as Rubik’s Cube, for which other weak methods fail. Both a problem-solving
program and a learning program are described in detail. The performance of these
programs is analyzed in terms of the number of macros required to solve all
problem instances, the length of the resulting solutions (expressed as the number
of primitive moves), and the amount of time necessary to learn the macros. In
addition, a theory of \vhy the method works, and a characterization of the range of
problems for wh.it i. is useful are presented. The theory introduces a new type of
problem structure called operator decomposability. Finally, it is concluded that the
macro technique is a valuable addition to the class of weak methods, that macro-
operators constitute an interesting and important representation of knowledge, and
that searching for macros may be a useful general learning paradigm.

1.1 Introduction

One view of the the field of artificial intelligence is that it is the study of weak
methods [Newell 69]. A weak method is a general problem solving strategy that can
be used when not enough knowledge about a problem is available to employ a
more powerful solution technique. The virtue of the weak methods is the fact that
they only require a small amount of knowledge about a problem and hence are
extremely general. The set of weak methods includes generate-and-test, heuristic
search, hill-climbing, and means-ends analysis. With the exception of generate and
test, most of these techniques rely on a heuristic evaluation function which is used
to estimate the distance to the goal. For some problems, however, no such
evaluation function is known. This suggests that such problems do not have



sufficient structure to employ any technique more efficient thar, brute-force search
to solve a particular instance of the problem.1

Consider, however, a situation where we are not interested in solving just one
instance of the problem, but rather are concerned with being able to solve many
problem instances. In that case, it may be advantageous to learn a general strategy
for solving any instance of the problem, and then apply it to each problem instance.
This allows the computational cost of the learning stage to be amortized over all the
problem instances. Such an approach will only be useful if there is Some strycture
to the collection of problem instances such that the fixed cost of learning a single
strategy plus the marginal cost of applying it o each problem instance is less than
the cost of solving each instance from scratch. '

In other words, even though a given instance of a prbblem does not have
sufficient structure to allow an efficient solution, a collection of problem instances
may have some common structure that allows the whole set to be solved with much
less work than the sum of solving each instance individually. This suggests the
existence of weak methods for learring, as opposed to problem solving, based on
such structure. This work explores one such weak method of learning, that of
searching for macro-operators.

1.2 Chapter Summaries *

This section presents a short summary of each of the remaining chaptérs.

1.2.1 Chapter 2: The Need for.a New Problem Solving Method

Chapter 2 demonstrates that there exist problems that have efficient solution
strategies that cannot be explained by any of the current stock of weak methods,
and presents a 2x2x2 version of Rubik’s Cube as an exarﬁple. The goal state of this
problem is naturally described as a conjunction of a set of subgoals. It is observed
that all known algorithms for this problem require that previously satisfied subgoals

”

1Th"e tferms "problem” and "problem space” in this monograph refer to a set of states and a
collectipn of operators that connect them. A "problem instance" is a problem with'a specified pair of
initial and goal states.
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be violated later in the solution path. Such a set of subgoals is referred to as
non-serializable. However, the standard technique for solving problems with
subgoals, means-ends analysis, does not allow non-serializable subgoals.
Furthermore, we present empirical evidence that several natural heuristic
evaluation functions for the simplified Rubik’s Cube provide no useful estimate of
distance to the goal, suggesting that heuristic search is of no use in solving the
problem. Hence, Rubik’'s Cube cannot be solved by any of these techniques.

1.2.2 Chapter 3: Previous Work

Other work related to this research is reviewed in Chapter 3. Ernst and Goldstein
wrote one of the first programs that learned efficient strategies for solving
problems, by learning differences for the General Problem Solving program of
Newell and Simon. Non-serializable subgoals were studied extensi\;er in the
context of the blocks world by Sussman, Sacerdoti, Warren, Tate, Manna and
Waldinger, and others. Macro-operators were firsf learned and used by the STRIPS
problem solver and later by the REFLECT system of Dawson and Siklossy. Baneriji
suggested the use of macros to deal with the non-serializable subgoals of the
Rubik’'s Cube and the Fifteen Puzzle. Finally, Sims and others showed how to
organize sets of macros to solve permutation puzzles, of which Rubik’s Cube is an
example, and demonstrated one way the macros could be learned.

1.2.3 Chapter 4: The Macro Problem Seoiver

Chapter 4 describes the Macro Problem Solver, an extension of the General
Problem Solver to include macro-operators. The basic idea of the method is to
apply macros that may temporarily violate previously satisfied subgoals within their
application, but that restore all previous subgoals to their satisfied states by the end
of the macro, and satisfy an additional subgoal as well. The macros are stored in a
two dimensional table, called a macro table, in which each column of the table
contains the macros necessary to satis}y a particular subgoal. The subgoals are
solved one ata time, by applying a single macro from each column of the table.
The Macro Problem Solver generates very efficient solutions to several classical
problems, some of which cannot be handled by other weak methods. The
examples include Rubik’s Cube, the Eight and Fifteen Puzzies, the Think-a-Dot

problem, and the Towers of Hano§ problem. 3



1.2.4 Chapter 5: Learning Macro-Operators

The question of how macros are learned or acquired is the subject of Chapter 5.
The simplest technique is a brute-force search. However, by using a technique
related to bidirectional search, the depth of the search.car be cut in half. Finally,
existing macros can be composed to find macros that are beyond the search limits.
These techniques are sufficient for learning the necessary set of macros for the
example problems. In addition, a design for a general Macro Learning Program is
presented. The design clearly separates the problem-dependent components of
the method from the problem-independent features. A key property of the learning
program is that all the macros necessary to solve any problem instance are found in
a single search from the goal state.

1.2.5 Chapter 6: The Theory of Macro Problem Solving

Chapter 6 explains the theory of macro problem solving and characterizes the
range of problems for which it is effective. The theory is presented in two parts: a
special case in which a state is represented by a vector of state variables, and the
general theory that encompasses arbitrary state representations. A necessary and
sufficient condition for the success of the method is a new type of problem
structure called operator decomposability. A totally decomposable operator is one
that may affect more than one state variable, but whose effect can be decomposed
into its effect on each state variable independently. The degree of operator
decomposability ina problem constrains the ordering of the subgoals, ranging from
complete freedom in the case of Rubik’s Cube, to a total ordering for the Towers of
Hanoi problem. In addition, further generalizations of the method are presented.
For example, we show that in some cases, efficient solution strategies can be
learned based on randomly generated subgoals!

1.2.6 Chapter 7: Performance Analysis

An analysis of the performance of the problem solving and learning programs is
presented in Chapter 7. The performance measures include the number of macros
that must be stored for a given problem, the amount of time required to learn the
macros, and the length of solutions generated in terms, of number of primitive

4



moves, both in the worst case and the average case. The first result is that the total
number of macros is the sum of the number of macros in each column whereas the
number of states in the space is the product of these values. The total learning time
for the macros is shown to be of the same order as the amount of time required to
find a solution to a sing!e\problem instance without the macros. Finélly, if there are
N subgoals to a problem, the solution length generated by the Macro Problem
Solver is less than or equal to N times the optimal solution length, in the worst case.
In addition, an average case analysis of solution length is found to agree with
experimental résults for the 2x2x2 Rubik’s Cube. Furthermore, for the Eight Puzzle
and the full 3x3x3 Rubik’s Cube, the solution lengths generated by the Macro
Problem Solver are close to or shorter than those of an average human problem
solver. An important feature of this analysis is that each performance parameter is
expressed in terms of a corresponding measure of problem difficuity, rather than
problem size. For example, the worst-case solution length is expressed in terms of
the optimal solution length.

1.2.7 Chapter 8: Reflections and Fu rther Work

Several observations and directions for future research are presented in Chapter
8. First, the selection of subgoals and their ordering are two parameters of the
Macro Learning Program whose automatic generation requires further research.
Next, we show that the Macro Problem Solver can be combined effectively with
other problem solving methods such as operator subgoaling, macro generalization,
and problem decomposition, to solve problems that no single technique could solve
alone. In addition, we argue that given an ordered set of subgoals for a problem, the
difficulty of the problem is related to the maximum distance between two
successive subgoals, in terms of number of primitive moves. Next, we propose that
macro-operators are an important representation for knowledge, based on a brief
look at the domains of theorem proving and computer programming, and a detailed
examination of the domain of road navigation. Finally, an exploration of the utility of
macros in arbitrary problem spaces suggests that searching for macro-operators
may be a fairly general learning paradigm.
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1.2.8 Chapter 9: Conclusions - . *s

Chapter 9 presents the conclusions of this research. They incjude the finding that
the macro learning and problem solving techniques constitute a valuable addition
to the céllection of weak methods, the idea that macro-operators are an important
representation for knowledge, and the suggestion that searching for macros may
be a useful paradigm for learning. :



2 The Need for a New Problem Solving
Method

" The purpose of this chapter is to demonstrate that the existing collection of weak
methods is incomplete. There exists a problem, namely Rubik’s Cube, that cannot
be solved efficiently by any of the current stock of weak methods. Yet, people can
solve it, and even learn to solve it, quite efficiently. Hence, another method Vmust
underly the solution of this problem. In addition, we will argue that for other
reasons as well, Rubik’s Cube is an excellent domain for studying problem solving
and learning.

2.1 Problem Description: 2x2x2 Rubik’s Cube

Figure 2-1 shows a 2x2x2 version of the celebrated Rubik’s Cube, invented by
Erno Rubik in 1975. The puzzle is a cube that is cut by three planes, one normal to
each axis, Separating it into eight subcubes, referred to as cubies’. The four cubies
on either side of each cutting plane can be rotated in either direction with respect
to the other four cubies. Note that these rotations, called twists, can be made along
each of the three axes. The twists can be 90 degrees in either direction or 180
degrees.

Each of the cubies has three sides facing out, called facelets, each a different
color. In the goal siate of the puzzle, the four facelets on each side of the cube are
all the same color, making six different colors in all, one for each side of the cube.
The cube is initialized by performing an arbitrary series of twists to mix the colors
on each side. .The problem then is to solve the cube, or find a sequence of twists
that will restore the cube to the goal state, i.e. each side showing a single color.

The 2x2x2 cube is a simpler version of Rubik’s original cube. The original is a

1The terminology used here is standard in the literature of Rubik’s Cube [Frey 82].
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Figure 2-1: 2x2x2 Rubik’s Cube

3x3x3 cube with two planes of rotation cutting each axis (see Figure 2-2). The
2x2x2 cube is a subproblem of the 3x3x3 cube: it is isomorphic to a restriction of
the full cube in which only the eight cubies on the corners are considered. In other
words, if one ignores the interior edge and center cubies of the 3x3x3 cube, then
the problem reduces to the 2x2x2 cube. Both problems will be considered in this
work.

Y.
L/
d
/

Figure 2-2: 3x3x3 Rubik’'s Cube

2.2 Rubik’s Cube as a Domain for Problem Solvihg and
Learning Research

There are several reasons why Rubik’s Cube is an excellent domain for research
on problem solving and particularly on learning problem solving strategies.

First, note that there are two levels of tasks associated with the cube. One is the
*ask of given a particular initial configuration, find a sequence of twists that will
restore it to the goal state. This is the problem solving task. The other is the

8



learning task of acquiring a strategy that will solve the cube from any initial state.
The reason for this distinction is that the puzzie is really a collection of a very large
number of problem instances, one for each possible initial state?.

An obvious reason for studying Rubik’s cube is that the problem is well structured
yet very difficult. Since the states and operators are clearly specified and easily
represented, one can easily construct a problem space for the problem. That the
problem is genuinely difficult is attested to by the phenomenally large number of
people who have unsuccessfully worked on scrambled cubes. The published
strategies to the problem are all fairly complex in the sense that it is considered a
significant achievement to learn one of them. Furthermore, the problem of
discovering a strategy is even more difficult. Most people who try it never succeed,
and those who do succeed typically require several weeks to several months of
effort.

Not only does it take a long time to learn a strategy, but progress toward it is
incremental and observable. Many problems are difficult and require a long time to
solve, but the -solution, once discovered, becomes apparent instantaneously. In
Rubik’s Cube, progress toward a strategy occurs throughout the learning process
and can be measured in terms of the number of cubies that can be correctly
positioned relative to the goal state. In addition, it is usually clear what pieces of
knowledge are being acquired during the learning. These features of the problem
make it an ideal domain for studying the learning of problem solving strategies.

Finally, the most compelling réason for studying Rubik’s Cube is the fact that it
cannot be solved-efficiently by any of the current stock of weak methods. After
describing a problem space for the 2x2x2 cube, evidence supporting this claim will
be presented. ’

2The term "solution" is used to l;efer to a sequence of primitive moves that maps a particular
initial state to a particular goal state. The term “strategy” refers to an algorithm that will generate a
solution to any problem instance.

9



2.3 Problem Space

This section presents a problem space for the 2x2x2 cube by describing a data
structure to represent a state or configuration of the cube, and giving a procedural
implementation of each of the primitive operators of the puzzle. In general, the task
of going from a problem description to a repr,esentation'of the pi’oblem is complex,
" and if done cleverly can result in a vast reduction in problem solving effort. In this
case, however, the representation is based on relatively straightforward:
observations and does not significantly reduce the difficulty of the problem.

2.3.1 State Representation

The primary issue in generating a problem space for any problem is designing a
data structure to represent a state of the problein. Perhaps the most obvious state
representation would be to list in some order the colors that appear on each facelet
of the cube. However, the choice of a facelet as a primitive results in an inefficient
representation. The reason is that the facelets are physically constrained to occur
in fixed groups of three by virtue of being attached to particular cubies, which move
as units. Incorporating this constraint directly in the representation'gives rise to a
more efficient representation. '

By choosing a cubie as the primitive of the representation, we are led to represent
a cube configuration as a permutation of the cubies among the different positions,
or cubicles, that the cubies can occupy. In addition, a particular cubie can exist in
the same position but with its colors twisted in any of three different orientations,
one corresponding to each facelet of the cubie. The three orientations will be
labelled 0, 1, and 2. The orientation is determined by examining the unique facelet
of each cubie that faces either up or down in the goal state of the cubie. Its
orientation is the number of 120 degree clockwise rotations of the cubie about an
axis from the center of the cube through the corner of the cubie which would map
the up or down facelet from the top or bottom side of the cube to its current
position.

Thus, each cubie must be represented by both its position and its orientation.
This suggests an eight element array of cubies, where each element encodes both

10



