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PREFACE

HIS may be regarded as the sixth edition of a T'reatise on the Mathematical
Theory of the Motion of Fluids, published in 1879. Subsequent editions,
largely remodelled and extended, have appeared under the present title.

In this issue no change has been made in the general plan and arrangement,
but the work has again been revised throughout, some important omissions
have been made good, and much new matter has been introduced.

The subject has in recent years received considerable developments, in the
theory of the tides for instance, and in various directions bearing on the
problems of aeronautics, and it is interesting to note that the “classical”
Hydrodynamics, often referred to with a shade of depreciation, is here found -
to have a widening field of practical applications. Owing to the elaborate
nature of some of these researches it has not always been possible to
fit an adequa.te account of them into the frame of this book, but attempts
have occasmna.lly been made to give some mdlcatlon of the more important
results, and of the methods employed.

As in previous editions, pains have been taken to make due acknowledg-
ment of authorities in the footnotes, but it appears necessary to add that the
original proofs have often been considerably modified in the text.

I have again to thank the staff of the University Press for much valued
assistance during the printing.

HORACE LAMB
April 1932
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HYDRODYNAMICS

CHAPTER I
THE EQUATIONS OF MOTION

1. TaE following investigations proceed on the assumption that the matter
with which we deal may be treated as practically continuous and homogeneous
in structure; .. we assume that the properties of the smallest portions into
which we can conceive it to be divided are the same as those of the substance
in bulk.

The fundamental property of a fluid is that it cannot be in equilibrium in
a state of stress such that the mutual action between two adjacent parts is
oblique to the common surface. This property is the basis of Hydrostatics,
and is verified by the complete agreement of the deductions of that science
with experiment. Very slight observation is enough, however, to convince
us that oblique stresses may exist in fluids ®n motion. Let us suppose for
instance that a vessel in the form of a circular cylinder, containing water
(or other liquid), is made to rotate about its axis, which is vertical. If the
angular velocity of the vessel be constant, the fluid is soon found to be rotat-
ing with the vessel as one solid body. If the vessel be now brought to rest, the
motion of the fluid continues for some time, but gradually subsides, and at
length ceases altogether; and it is found that during this process the portions
of fluid which are further from the axis lag behind those which are nearer,
and have their motion more rapidly checked. These phenomena point to the
existence of mutual actions between contiguous elements which are partly
tangential to the common surface. For if the mutual action were everywhere
wholly normal, it is obvious that the moment of momentum, about the axis
of the vessel, of any portion of fluid bounded by a surface of revolution about
this axis, would be constant. We infer, moreover, that these tangential stresses
are not called into play so long as the fluid moves as a solid body, but only
whilst a change of shape of some portion of the mass is going on, and that
their tendency is to oppose this change of shape.

2. Tt is usual, however, in the first instance to neglect the tangential
stresses altogether. Their effect is in many practical cases small, and, inde-
pendently of this, it is convenient to divide the not inconsiderable difficulties
of our subject. by investigating first the effects of purely normal stress. The
further consideration of the laws of tangential stress is accordingly deferred
till Chapter XI1.

LH 1
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If the stress exerted across any small plane area situate at a point P of
the fluid be wholly normal, its intensity (per
unit area) is the same for all aspects of the B
plane. The following proof of this theorem
is given here for purposes of reference.
Through P draw three straight lines PA,
PB, PC mutually at right angles, and let
a plane whose direction-cosines relatively to
these lines are I, m, », passing infinitely
close to P, meet them in A4, B, C. Let
P, P1, P2, Ps denote the intensities of the
stresses* across the faces ABC, PBC, PCA, PAB, respectively, of the
tetrahedron PABC. If A be the area of the first-mentioned face, the areas
of the others are, in order, A, mA, nA. Hence if we form the equation of
motion of the tetrahedron parallel to PA we have p, . IA= pl . A, where we
have omitted the terms which express the rate of change of momentum, and
the component of the extraneous forces, because they are ultimately propor-
tional to the mass of the tetrahedron, and therefore of the third order of
small linear quantities, whilst the terms retained are of the second. We
have then, ultimately, p=p,, and similarly p = ps = p;, which proves the
theorem.

C

3. The equations of motion of a fluid have been obtained in two different
forms, corresponding to the two ways in which the problem of determining
the motion of a fluid mass, acted on by given forces and subject to given
conditions, may be viewed. We may either regard as the object of our
investigations a knowledge of the velocity, the pressure, and the density,
at all points of space occupied by the fluid, for all instants; or we may seek
to determine the history of every particle. The equations obtained on these
two plans are conveniently designated, as by 'German mathematicians, the
‘Eulerian’ and the ‘Lagrangian’ forms of the hydrokinetic equations, although
both forms are in reality due to Eulert.

The Eulerian Equations.

4. Let u, v, w be the components, parallel to the co-ordinate axes, of the
velocity at the point (z, y, 2) at the time ¢. These quantities are then
functions of the independent variables , y, z, t. For any particular value of
t they define the motion at that instant at all points of space occupied by

* Reckoned positive when pressures, negative when tensions. Most fluids are, however,
incapable under ordinary conditions of supporting more than an exceedingly slight degree of
tension, so that p is nearly always positive.

t ¢ Principes généraux du mouvement des fluides,’’ Hist. de I’ Acad. de Berlin, 1755.

** De principiis motus fluidorum,” Novi Comm. decad. Petrop. xiv. 1 (1759).

Lagrange gave three investigations of the equations of motion; first, incidentally, in
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the fluid; whilst for particular values of =z, y, 2z they give the history of
what goes on at a particular place.

We shall suppose, for the most part, not only that u, v, w are finite and
continuous functions of z, y, 2, but that their space-derivatives of the first
order (ou/ox, 9v/ow, dw/dx, &c.) are everywhere finite*; we shall understand
by the term ‘continuous motion, a motion subject to these restrictions.
Cases of exception, if they present themselves, will require separate examina-
tion. In continuous motion, as thus defined, the relative velocity of any two
neighbouring particles P, P’ will always be infinitely small, so that the line
PP’ will always remain of the same order of magnitude. It follows that if
we imagine a small closed surface to be drawn, surrounding £, and suppose
it to move with the fluid, it will always enclose the same matter. And any
surface whatever, which moves with the fluid, completely and permanently
separates the matter on the two sides of it.

5. The values of u, v, w for successive values of ¢ give as it were a series
of pictures of consecutive stages of the motion, in which however there is no
immediate means of tracing the identity of any one particle.

To calculate the rate at which any function F(z, vy, 2, t) varies for a
moving particle, we may remark that at the time ¢ + 8¢ the particle which was
originally in the position («, ¥, z) is in the position (z + u 8¢, y +vdt, z + wdt),
so that the corresponding value of F is

oF . OF oF oF

F(z+udt, y+vdt, z+wdt, t+8t)=F+u8t—55+ v8t5§ +w8t$ +8t§ .
If, after Stokes, we introduce the symbol D/D¢ to denote a differentiation
following the motion of the fluid, the new value of F is also expressed by

F+ DF/Dt. &, whence

DF oF oF ©oF oF
~D?=5Z+u%+v@+wa—z. ..................... (1)

6. To form the dynamical equations, let p be the pressure, p the density,
X, Y, Z the components of the extraneous forces per unit mass, at the point
(w, y, 2) at the time ¢. Let us take an element having its centre at (z, ¥, 2),
and its edges 8z, 8y, &z parallel to the rectangular co-ordinate axes. The rate
at which the 2-component of the momentum of this element is increasing is
p8z8ydz Du/Dt; and this must be equal to the z-component of the forces

connection with the principle of Least Action, in the Miscellanea Taurinensia, ii. (1760) [Oeuvres,
Paris, 1867-92, i.]; secondly in his ¢ Mémoire sur la Théorie du Mouvement des Fluides,”’ Nouv.
mém. de U dcad. de Berlin, 1781 [Oeuvres, iv.]; and thirdly in the Mécanique Analytique. In this
last exposition he starts with the second form of the equations (Art. 14, below), but translates
them at once into the ¢ Eulerian’ notation.

* It is important to bear in mind, with a view to some later developments under the head of
Vortex Motion, that these derivatives need not be assumed to be continuous.
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acting on the element, Of these the extraneous forces give p8z8y82X. The
pressure on the yz-face which is nearest the origin will be ultimately
(p—3%0p/ox.dz) 8y 8z*,
that on the opposite face
(p+40p/ox. dx) 8y 2.
The difference of these gives a resultant — 9p/ox. 828y 8z in the direction of
z-positive. The pressures on the remaining faces are perpendicular to .
We have then

Du_ o
pdxdydz e = pdxdydz X — P Sz 8y 8z.
Substituting the value of Du/Dt from (1), and writing down the sym-

metrical equations, we have
ou, Ou  ou ou _ X lop )

FTE PR TRl Pt v
v, ov o o _ o 19p
§+ua_x+ya—y.+w§_Y ;a—g-/’ b erereeriieienee (2)

ow ow ow ow
7. To these dynamical equations we must join, in the first place, a
certain kinematical relation between u, v, w, p, obtained as follows,

_lop
poz |

If @ be the volume of a moving element, we have, on account of the
constancy of mass,
D.pQ

ZP¥_o,

Dt
1Dp 1 DQ
;jg+QE=O. R P (1)
To calculate the value of 1/Q.DQ/Dt, let the element in question be that
which at time ¢ fills the rectangular space 8x8ydz having one corner P at
(2, y, 2), and the edges PL, PM, PN (say) parallel to the co-ordinate axes.
At time ¢+ 8¢ the same element will form an oblique parallelepiped, and since
the velocities of the particle L relative to the particle P are oufox . 8z,
0v/ox . 8z, dw [0z . 8z, the projections of the edge PL on the co-ordinate axes
become, after the time &8¢,
(1+320t) 80, Zor.bn, Mor.ss,
oz ox ox
respectively. To the first order in 8, the length of this edge is now

<1 + gl—; St) o,

or

and similarly for the remaining edges. Since the angles of the parallelepiped

* It is easily seen, by Taylor’s theorem, that the mean pressure over any face of the element
dz 8y 5z may be taken to be equal to the pressure at the centre of that face.
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differ infinitely little from right angles, the volume is still given, to the first
order in 8, by the product of the three edges, 7.e. we have

DQ., ou  dv ow
1DQ ou  ov ow
or 'Q_ITt_ﬁi-*_é@"-a_z’ ........................ 2
Hence (1) becomes
Dp ou ~ov  Dw\
m+p<$+5§+$)—0. ........... SRRITTEE (3)
This is called the ‘equation of continuity.
. ou  Ov  Ow
The expression 5t 3y g e 4)

which, as we have seen, measures the rate of dilatation of the fluid at the
point (z,y,2), is conveniently called the ‘expansion’ at that point. From a
more general point of view the expression (4) is called the ‘divergence’ of the
vector (u,v,w); it is often denoted briefly by

div (u, v, w). _

The preceding investigation is substantially that given by Euler*.
Another, and now more usual, method of obtaining the equation of con-
tinuity is, instead of following the motion of a fluid element, to fix the
attention on an element 828ydz of space, and to calculate the change pro-
duced in the included mass by the flux across the boundary. If the centre
of the element be at (2, y, z), the amount of matter which per unit time enters
it across the yz-face nearest the origin is

(pu -3 a—a’? Sx) Sydz,
and the amount which leaves it by the opposite face is

0.pu
The two faces together give a gain

- ?—'a%u&u 8y 8z,
per unit time. Calculating in the same way the effect of the flux across the
remaining faces, we have for the total gain of mass, per unit time, in the
space Oz 8y dz, the formula
- (%%Q"L +a—é—;—v +—a.a—zw) 828y 8z.
Since the quantity of matter in any region can vary only in consequence of
the flux across the boundary, this must be equal to

0
5 (p 828y d2),

* lec.antep. 2, -
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whence we get the equation of continuity in the form
0p L O.PU BP0 0P o s (5)

% o oy | @

8. It remains to put in evidence the physical properties of the fluid, so
far as these affect the quantities which occur in our equations.

In an ‘incompressible’ fluid, or liquid, we have Dp/Dt=0, in which case
the equation of continuity takes the simple form

T o

It is not assumed here that the fluid is of wniform density, though this is of
course by far the most important case.

If we wish to take account of the slight compressibility of actual liquids,
we shall have a relation of the form

P=0(P—=P0)/P0s +rerreirenriiiiiiiiiaaenn, (2)
or plpe=1+plr, oo (3)
where « denotes what is called the ‘elasticity of volume.’

In the case of a gas whose temperature is uniform and constant we have
the ‘isothermal’ relation

PIPo=P/P0s v, (4)
where po, po are any pair of corresponding values for the temperature in
question.

In most cases of motion of gases, however, the temperature is not constant,
but rises and falls, for each element, as the gas is compressed or rarefied.
When the changes are so rapid that we can ignore the gain or loss of heat
by an element due to conduction and radiation, we have the ‘adiabatic’

relation

PIPo=(P/Po)s tereerreieieiiie (5)
where po and p, are any pair of corresponding values for the element con-
sidered. The constant v is the ratio of the two specific heats of the gas; for
atmospheric air, and some other gases, its value is about 1-408.

9. At the boundaries (if any) of the fluid, the equation of continuity is
replaced by a special surface-condition. Thus at a fized boundary, the velocity
of the fluid perpendicular to the surface must be zero, t.e. if I, m, n be the
direction-cosines of the normal,

ludmy+nw=0. ...cooovviiniiiniinniinnnn.. )
Again at a surface of discontinuity, i.e. a surface at which the values of u, v, W
change abruptly as we pass from one side to the other, we must have
Lmn—ug)+m (vi—vo)+ n(wy—we) =0, ..covvvnrnnnn.. 2)
where the suffixes are used to distinguish the values on the two sides. The
same relation must hold at the common surface of a fluid and a moving solid.



