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Ay, call it holy ground,
The soil where first they trod!

F.D. HEMaNs (1793-1835),
Landing of the Pilgrim Fathers

Chapter 1

Fundamentals

Betore turning to the actual subject of this text, path integrals, it may be
useful to recall some of the theoretical background underlying the theory
to be developed.!

1.1 Classical Mechanics

A classical mechanical system is described by a set of generalized coordi-
nates qi,...,qn, the associated velocities, ¢i,...,dn, and a Langrangian

L(qi(t)’q.i(t)vt)' (11)

The dot denotes the time derivative d/dt. The Lagrangian governs the
dynamics and is, at most, a quadratic function of ¢;. The time integral

Algl = [ dtL(a(®), 69,0 (12)

over the Lagrangian along an arbitrary path ¢;(¢) is called the action of this
path. The path ¢;(t) that is actually chosen by the system as a function of
time is called the classical path, ¢¢'(t). It has the property of extremizing
the action in comparison with all neighboring paths

ai(t) = g7'(t) + bai(t) (1.3)

with fixed end points ¢(#,), g(t.). To express this property formally one
mtroduces the variation of the action as the linear term in &g,(t} of the
change of Alg,):

6Alg] = {Alg: + 6¢i) — Alaslhin (1.4)

!The reader familiar with classical and quantum mechanics may skip the first four
sections and start with Section 1.5.




2 Chapter 1 Fundamentals

The extremal principle for the classical path is then

8 Alai)| (1.5)

for all variations of the path around the classical path, §¢;(t) = ¢:(¢) —¢§'(2),
which vanish at the end points:
69:(ta) = bgi(ts) = 0. (1.6)

Since the action is a time integral of a Lagrangian, this extremality property
can be phrased in terms of differential equations. Let us calculate the
variation of A[g;] explicitly,

bAle:] = {Alag + 6qi) — Alg:)}iin

/ dt {L (qi(t) + qi(t), Gi(t) + 66i(£),£) — L (qi(t), s(t), 1)}

a:{t)=qg(t) -

i

ty oL oL _.

t 0L d3dL oL
dt ¢ — — ——— 1 8q:(t) + =8¢t
[d {aqt dtad.} Q()+aq‘ Q‘()
The last expression arises by partially integrating the &¢; term. Here, as in
the entire text. repeated indices are understood to be summed (Einstein’s
summation convention). The end point terms (surface or boundary terms)
at t, and t, may be dropped, due to (1.6). Thus we find, for the classical
orbit ¢f!(£), the so-called Euler-Lagrange equations:
ddL 8L
——— ==, (1.8)
dt3¢;  Og;
There is an alternative formulation of classical dynamics which is based
on a Legendre transformed function of the Lagrangian called the Hamilto-
nian

i

" (1.7)

H(pi(t), g:(t),t) = g—ié-‘(t) — L(qi(t), 6i(2), 1). (1.9)

Its value at any time is identified with the energy of the system. According
to the general theory of Legendre transformations,? the natural variables
in H are no longer ¢;(t) and ¢;(t), but ¢(t) and the generalized momenta
pi(t) defined by the equations

p(t) = %L@.(t),q.-a),t). (1.10)

3For an elementary introduction see the book H.B. Callan, Classical Thermodynamics,
John Wiley nnd Sons, New York, 1960. : .



1.1 Classical Mechanics

In order to specify the Hamiltonian H (p;(t), ¢:(t),t) in terms of its proper
variables p;(t), ¢:(t), the equations (1.10) for p;(t) have to be solved for ¢i(t),

éi(t) = vi(pi(t)1ql'(t)at)) (111)
and inserted into (1.9), giving H as
H (pi(t), qi(2), t) = pi(t)vi(pi(t), 4:(t),2) — L (gi(t), vi (pi(2), 4s(2)) , 1) . (1.12)

Expressed in terms of H, the action becomes a functional of p;(t) and ¢;(t),

Alpa) = [ dt [0 (1) - B0, (0.0 (1.13)

This is the so-called canonical form of the action. The classical orbits,
now specified by p¢'(t), ¢f'(t), extremize the action in comparison with all
neighboring orbits when g;(¢) are varied at fixed end points [see (1.3), (1.6)],
and p;(t) without restriction:

a(t) = g'(t)+6q(t),  baqi(ta) = bg:(ts) =0,
pi(t) = pi(t) + 6pit).

This gives a variation

(1.14)
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From this we find the Hamilton equations of motion for the classical orbits,

g - _OH
T = ~EIT,
 om (1.16)
= Opi

These agree with the Euler-Lagrange equations (1.8) via (1.10), as can
easily be verified.

The 2N-dimensional space of all p; and g; is called the phase space. An
arbitrary function

F(pi(t), g:(t),t) (1.17)



