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PREFACE

This book is an outgrowth of a series of lectures presented to the graduate
students at The University of Alabama in Huntsville over a period of years.
It begins with mathematical preliminaries and develops into a finite element
analysis for solving partial differential equations of boundary and initial value
problems in fluid dynamics. The book is intended for not only the uninitiated
student but also for the scientist and engineer in practice.

The initial and boundary value problems in continuous media have been
the subject of intensive study for centuries. Although many analytical and
numerical methods of solution have been developed extensively, there still remains
unsolved a considerable number of important problems. The electronic computer
in modern times led to the new ideas in the approximation theory. The finite
element method with the use of a computer has rapidly become ong of the most
powerful tools in solving the complex problems of continuous media in general.

The primary objective here is to learn how to solve practical problems in
fluid dynamics. The beginner, upon thorough comprehension of the solution
procedures in some selected subjects, will then find the rest of the topics self-
explanatory, in which details are no longer needed and thus only the essence
is presented. The mathematical properties of finite elements undoubtedly con-
stitute an important part of our study. Thus the secondary objective is to providg
a mathematical treatment with which the analyst can establish validity of his
calculations.

A review of the historical background of the finite element method is given
in Chapter 1. An elementary account of functional analysis, which is the founda-
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xii FINITE ELEMENT ANALYSIS IN FLUID DYNAMICS

tion for the finite element error estimates, is also presented. However, a study of
this subject is not a prerequisite for understanding the rest of this book if one
just wishes to learn how to solve a problem. Following discussions of variational
principles and weighted residual methods, we demonstrate simple one-dimensional
finite element solutions for the benefit of the uninitiated student. Chapter 2
discusses various types of finite elements grouped into one-, two-, and three-
dimensional and axisymmetric geometries, along with local and global interpola-
tion functions and dual spaces. Assembly of local equations into a global form,
imposition of boundary conditions, and solution of nonlinear equations and
time-dependent’ problems are presented in Chapter 3. Error estimates for linear
problems are also included.

The topics of fluid dynamics begin with Chapter 4 where basic fluid dynamics
equations are reviewed. Incompressible and compressible flows are covered in
Chapters S and 6, respectively. Here solutions of the Laplace equation for two-
dimensional domain and Stokesian equation for axisymmetric geometry are high-
lighted by complete details using triangular and isoparametric elements. Then
various alternative formulations of steady and unsteady incompressible flow
problems follow, including the velocity, pressure, stream function, and vorticity as
variables. Error analyses from the concept of Sobolev spaces are discussed where
appropriate. Problems of free surface, eigenvalues and eigenfunctions for wave
motion, turbulent boundary layers, three-dimensional flow, boundary singularities,
and scme discussions of finite elements versus finite differences are also included.
In the case of a compressible flow with temperature and density as additional
variables, the methodology as used for incompressible flow can be applied, and
thus unnecessary repetitions are avoided. Both viscous and inviscid compressible
flows are discussed. Some recent developments of transonic aerodynamics are
summarized. Finally, selected miscellaneous topics such as diffusion, magneto-
hydrodynamics, and rarefied gas dynamics are presented in'Chapter 7.

The finite element method is rapidly expanding in its scope of applications.
In the meantime, commitments of the mathematicians, much to the surprise of
the ergineers, have provided new meaning, momentum, and confidence to this
new field of research—the finite element analysis. It is for the unification of our
knowledge sought by both engineers and mathematicians and for the spirit of
teamwork that the present book is intended.

In the writing of this book, I am indebted to a countless number of authors
of pioneering works from which I have freely drawn some of the materials and
viewpoints. Professor J. Tinsley Oden reviewed the manuscript and offered
invaluable suggestions for improvement. I wish to express my deepest appreciation
to hirn. Thanks are also due to my former and present students who assisted
in the solution of example problems. Among them are Dr. J. K. Lee, Messrs.
C. G. Hooks, J. N. Chiou, and R. H. Rush. I owe a particular debt of gratitude
to Mrs. Barbara Sweeney, who provided excellent service in computer pro-
gramming. My thanks are further extended to Professor S. T. Wu for reviewing
a portion of the manuscript, and to Professors J. J. Brainerd and C. C. Shih,
among other colleagues, who shared useful discussions with me.
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Some of the results presented in this book were obtained from the research
under contract with the U.S. Air Force Office of Scientific Research during 1974,
and subsequently with the U.S. Army Research Office since 1975. Their support
is gratefully acknowledged.

The entire manuscript was typed by Mrs. Vivian M. Patterson, who, with
enthusiasm and unfailing patience, volunteered the arduous task of proofreading
and retyping. To her I am truly grateful.

University of Alabama, Huntsville T. J. Chung
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CHAPTER

ONE
INTRODUCTION

1-1 GENERAL

The finite element method is an approximate method of solving differential
equations of boundary and/or initial value problems in engineering and mathe-
matical physics. In this inethod, a continuum is divided into many small elements
of convenient shapes—triangular, quadrilateral, etc. Choosing suitable points
called “nodes” within the elements, the variable in the differential equation is
written as a linear combination of appropriately selected interpolation functions
and the values of the variable or its various derivatives specified at the nodes.
Using variational principles or weighted residual methods, the governing
differential equations are transformed into “finite element equations” governing
all isolated elements. These local elements are finally collected together to form
a global system of differential or algebraic equations with proper boundary and/or
initial conditions imposed. The nodal values of the variable are determined from
this system of equations.

The finite element method was originally developed by aircraft structural
engineers in the 1950’s to analyze large systems of structural elements in the
aircraft. Turner, Clough, Martin, and Topp [1956] presented the first paper on
the subject, followed by Clough [1960] and Argyris [1963], among others.
Application of the finite element method to nonstructural problems such as fluid
flows and electromagnetism was initiated by Zienkiewicz [1965], and applications
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to a wide class of problems of interest in nonlinear mechanics was contributed
by Oden [1972]. S

The close relationship of finite element analysis to the classical variational
concept of the Rayleigh-Ritz method [Rayleigh, 1877; Ritz, 1909] or the weighted
residual methods modeled after the well-known method of Galerkin [1915] has
established the finite element method as an important branch of approximation
theory. In recent years various authors have contributed to the development of
the mathematical theory of finite elements. Among them are Babuska and Aziz
[1972], Ciarlet and Raviart [1972], Aubin [1972], Strang and Fix [1972], and

“Oden and Reddy [ 1976]. These recent developments have been greatly influenced

by the pioneering works of Lions and Magenes [ 1972, English translation].

Today various theories of fluid Behavior are available which encompass
virtually any type of phenomena of much immediate practical interest. However,
there remains a surprising number of unsolved important problems in fluid
dynamics due to difficulties encountered in most of the conventional analytical
and numerical methods. In fluid dynamics, a choice of Eulerian coordinates
renders the resulting governing equations nonlinear in general, and thus
analytically difficult to solve. The most widely used numerical method of over-
coming these difficulties has been the method of finite differences [Richtmyer and
Morton, 1967; Roache, 1972] in which the partial derivatives in the governing
equations are replaced by finite difference quotients. Another numerical method
in limited use is the particle-in-cell method [Evans and Harlow, 1957], in which
a system of cells is constructed so as to define the position of fluid particles in
terms of these cells, and each cell is characterized by a set of variables describing
the mean components of velocity, internal energy, density, and pressure in the cell.
Among other popular methods are the variational methods and methods of
weighted residuals [Finlayson, 1972]. Variational principles are used in the
Rayleigh—Ritz method. Unfortunately, variational principles often cannot be found
in some -engineering problems, particularly when the differential equations are
not self-adjoint. Weighted residuals are applied in the methods of Galerkin, least
squares, and collocation. The method of weighted residuals utilizes a concept of
orthogonal projection of a residual of a differential equation onto a -subspace
spanned by certain weighting functions. In the finite element method, we may use
either variational principles when they exist, or weighted residuals through
approximations. In finite element applications to fluid dynamics, the Galerkin
method is often considered the most convenient tool for formulating finite element
models since it requires no variational principles. The least squares method
requires higher order interpolation functions in general, even if the physical
behavior may be adequately described by linear or lower order functions. For
these reasons, our discussions in this book are centered around the Galerkin
method, although the finite element formulations via the methods of variational
principles and least squares are demonstrated to a limited extent.

In the following sections of this chapter, we discuss basic. mathematical
preliminaries and notations. The reader is assumed to have been exposed to the
vector analysis and matrix algebra. Tensor equations or index notations are used
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throughout the text, although no extensive knowledge of tensor algebra is required
of the reader. All necessary mathematical preliminarics are presented in sufficient
detail for the benefit of the beginner and for those who may require review. Brief
discussions of functional analysis including Sobolev spaces, which is essential in
=rror estimates and convergence, are also presented. Subsequently, we discuss the
;oncepts of variational principles and weighted residuals as used in the classical
ipproximate methods of analysis such as thé Rayleigh—Ritz and Galerkin methods,
respectively. The relationships of these classical concepts with the finite element
theory are clarified At the end of this chapter, simple example problems are
solved to demonstrate the basic idea of finite element approximation for the
neginner: more general discussions of finite element analysis are taken up in
.ubsequent  hapters.

{-2 MATHEMATICAL PRELIMINARIES

1-2-1 Vector and Index Notations

Some of the basic relations in mechanics may be written conveniently in vector
notations. Let us begin with commonly used vecfor expressions in cartesian
coordinates. Consider the vectors A = A;i; and ‘B = B;i; with an angle between
them being » Here A4; and B; are the components of the vectors A and B,
respectively. and i; are the unit vectors with i = 1,2.3. The dot product and
cross product arc given by

.‘%'B':/“IBCOS'X:—‘: ‘4lil'BjiJ=4lBj(5n)='4lBl : (l‘l(l)
A,’i" X Bi' = !AiBjai_ikikl (l-lb)

7

A x B| = ABsin x =

where the repeated indices imply summing; d;; is the Kronecker delta having
the property 6;; =1 for i=j and d;; =0 for i # j; and &5 is the permutation
symbol defined as

G123 = p3p = 8312 = | (clockwise permutation)
Cr3y == 6213 = €321 = — | (counterclockwise permutation)

with all other ¢, = 0 for any two or more indices being repeated. The permutation
symbot and Kronecker delta arc related by

Kijk‘(;mnp = (sim(sjndkp + (jinéjp(jkm -+ (5x1>()jm(5kn
e (Sim(sjpénic - (sin(sjmépk o ‘Sip(sjn(smp { 1-1 )
The continued products are

A X (B X C) == AiBjCkgl'jk (l‘ld)

AXBx(C)=(A-COB—-(A:-B)C= AiBjCkﬁjk/EUmim = AC;B; — B;Cpi; (lI-1¢)
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We introduce the vector differential operator, or simply del operator, V,
defined as

0
V=i,;—

cX

(1-2)

where i; are the components of the unit vector. Then
. CE .
VE = 'l' _“—_ = E‘,'ll'
where E is a scalar and the comma denotes the partial derivative. The divergence
and curl are given by

"VA_

divA=V-A=""1= 4, -3)
CX;

Curl A = V X A = gijkAj.iik (]'4)

In view of (1-1) through (1-4) we can show that
VIA‘B)=Ax (VxB)+(A-V)B+Bx (VxA)+(B-V)A (1-5)
Let us consider the velocity vector V = Vi;. From (1-5), we may write
VIV:V) =2V x (Vx V) + 2(V-V)V (1-6)
in which
VxV=gVih=wi =0 (1-7)
where w, are the components of vorticity vector

o = wiiy + 0yl + iy = (Va2 — Va)iy + (Vig = Va iz + (Va1 — Viis

_ (1-8)
For a two-dimensional problem, we have
» wy=Vo1— V2 (1-9)
The acceleration vector may be written in the form
\Y% : .
a=a—+(V-V)V (1-10a)
ot v
Substituting the relationship (1-6) in (1-10a) yields
. 2
a=a—Y+VV— ~Vxow (1-10b)
ot 2

in which V2 = V-V = V;¥;. Using index notion, we have
a =V, + GViV) s — apViw;
or = Ve + QV;V) x = &ijubmn;ViVom (1-10¢)
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We have shown here that all vector equations may be written in terms of
cartesian components of the vectors using index notations. The components g;
of the acceleration vector a may be referred to as a tensor of the first order. The
scalar is the zero order tensor. The second order tensor, such as the stress tensor
0;; or ¢, has two indices whereas the tensor of material constants is of fourth
order E;j; or E¥* It is seen that the number of indices determine the order of a
tensor. If a vector or tensor is referred to a cartesian basis, we refer to their
components as ¢artesian. For curvilinear coordinates and/or nonorthogonal co-
ordinates, the resulting tensor equations are noncartesian leading to the covariant
and contravariant components of a vector. Details of this subject are discussed
in Sec. 4-1 [see Sokolnikoff, 1964].

1-2-2 Matrix and Index Notations

In continuum mechanics, many of the physical laws are expressed by differential
equations which may then be transformed into tensor equations in a local or
global form. The earlier development of the finite element analysis was made
using the matrix equations because they appeared straightforward and convenient
when dealing with linear problems. However, as many nonlinear problems were
considered, the inadequacy of matrix notations became apparent. The power of
tensor analysis in mechanics in general is well known [see Sec. 4-1; also,
Sokolnikoff, 1967].
Consider a matrix equation of the form

Au=f (1-11)

where A represents a matrix of the size m x n. A matrix with m # n is called
- the rectangular matrix whereas that with m = n is referred to as the square matrix.
The matrix with m = 1 and n > 1 is called the row matrix whereas that with m > 1
and n = 1, the column matrix. Suppose that A, u, and f are of m x m, m x 1, and
m x 1, respectively, and we write (1-11) in the form

Ay Az Ay | [ fi
A2.1A22 "‘A%m u.z — fz (1-12)
At A A Ltim ] | S
If we premultiply both sides of (1-11) by u” with T denoting a transpose, then
u' A u=au" f (1-13)

Ixmmxmmx1 1xmmx1
Tt is seen that (1-13) becomes a matrix of size 1 x I, a scalar quantity, an
invariant, or a form of energy which has a physncal significance in continuum
mechanics. Had (1-12) been postmultiplied by u”, the resulting matrix would be
of mx m

A uw o =1 o (1-14)

wWotmm< 1T mx1 1xm
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If we choose to use index notations instead of matrix notations, we write
(1-11) in the form

Aijlljzﬁ (1'15(1)
or

CujAi = fi v : (1-15b)
The repeated indices imply summing according to the ranges of indices. A repeated
index is often called a dummy index and all indices not repeated are referred to
‘as free indices. In the case of (1-15), i is free index and j is dummy index. If
there is only one free index, then the number of equations is equal to the maximum
range of the free index. If there is more than one free index, then the total

number of equations is equal to the products of the maximum ranges of all free
indices.

Suppose that in (1-15), i = 1,2,...,m and j = 1,2,...,n. Then there result m
equations obtained by summing the products of the jth columns of A4;; and
corresponding jth rows of u;. It is obvious that the free indices of both sides of
Eq. (1-15) must match. If i,j = 1,2,...,m in (1-15), the expanded form of (1-15)
becomes

Apuy + Ay + 0+ Aim = fi

Ay + Agatiz + "+ Agm = f2 (1-16)

Ay + Amattz + 0 + Apm = fm

These equations are identical to the matrix form (1-12). If index notations are
used for (1-13), we write

A,-,-u,»u; = fiu; (1-17)

Note that the choice index i on u; is equivalent to premultiplication of u” in (1-13)
and the index i is also_repeated here. This will leave no.free index and thus
expansion of (1-17) results in a single equation

Anul’“l + Ayattatty + -+ Ayl
+ Ajugus + Axglgliy + 0 + Agzplints
.o (1-18)
+ ApiUitly + Apatiolin + * + Ayl Uy
= fiug + fauy + A T (m not to be summed)

which is identical to the expansion of the matrix equation (1-13). Likewise, Eq.
{(1-14) with index notation takes the form

A,-jujuk = ﬁuk (1-19)

It is clear that the free indices are i and k on both sides and thus the total
number of equations is equal to m x m. The expansion of (1-19) is of the form

/ 12 _/

/

Vo & &
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Bik= Cik
or
Bi1By3 " Bim Ci11Ciz2 Cim
leBzg"‘Bzm _ C21C22 Com
Bman-nZ'“Bmm _lecmz’”cmm
where

By = Ajuqug + Aptiaug + 0+ Attty = Cyy = frug

By, = Ajjuguy + Ajquiquy + 0 4 Agmimtiz = Cy2 = fius

Bmm = Amlulum + Am2u2um +-+ Ammumum = Cmm = fmum
(m not to be summed)

The results shown above are identical to those obtained by expanding the matrix
equation (1-14).
Consider now a special case of a matrix equation of the form

B" E B u=F (1-20)

6%33x33x66x1  6x1

The corresponding index equation may be obtained by introducing indices «, f =
1,2,...,6and i,j = 1,2,3.

BEiBjuy = E;;BuByug =F, (1-21)
with the free index « on both sides. Expanding (1-21) yields
E 1By Byuy + E(y By Byauy + -0 + EllBllbl6u6
+ EaBy Byuy + E(pByyBaguy + +7E12B11B26us
+ E3By1 B3 u; + Ey3By(Basuz + - + E13B11Basus

+ E33B31Byuy + E33ByBajup + -+ + EssleBssus =F,

To obtain the first equation from the matrix equation (1-20), one must write
out completely all components of each matrix, but these matrix multiplications
may become quite cumbersome. -

Let us now consider a fourth order symmetric tensor E,, with p,q,r,s = 1,2

Ellll E1122 0
Epyrs = | E2211 Ea222 0
0 0  Ej



