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Preface

This is an account of vibrations in which the illustrative material is
taken from many branches of physics and engineering. Vibrations is
a subject in which a student can apply, compare and relate many
of the fundamental ideas of mechanics and of electricity by means
of mathematically-based analogies. Such an integrating study has
obvious value at a time when scientific and technical knowledge is
increasing with almost explosive rapidity, when a thorough under-
standing of fundamental physical concepts and of mathematics is
essential,

The book describes certain mathematical ideas and explains their
application to physical systems: not mathematics-by-itself but
mathematics-with-physics. Such an approach is particularly suited to
those physics and engineering students whose mathematics is weak,
although all may benefit from it. For engineers in particular, the
acquisition of skill in, say, algebra and analysis, is less important
than in being able to formulate physical problems in mathematical
language: following this, the solution of hitherto intractabie
problems becomes possible by computers. This book is therefore
offered as a contribution to the art of formulating problems in
mathematical terms and in interpreting mathematical formulae in
physical terms.

The mathematics is deliberately limited so that undergraduate
students will not be unduly harassed; elementary differential equa-
tions and complex numbers are the main tools needed. The book will,
however, guide the student towards more advanced topics such as
Laplace transforms, matrices, and numerical methods. Some sections
of the book are at postgraduate level, e.g. Ch. 7 on Lagrange’s
equations, and may be omitted on a first reading.

Of particular interest is the account of transducer theory in Ch. 10
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vi Preface

for, so far as is known, no earlier textbook contains so complete a
treatment of the basic theory.

The book is partly based on a lecture course on Vibrations and
Waves given by the writer some years ago to physics students at
Queen Mary College. It has not proved possible to include an account
of wave-motion in this book but a second volume covering this
subject will be written. Thanks are due to the physics staff at Queen
Mary College who suggested that the book should be written, to
colleagues at Imperial College who have read and criticized various
portions.of the manuscript ~ notably Messrs Birss, Mautner, Mayne,
Michaelson and Prigmore —and to my wife who has typed the
manuscript. .

J.R.B.
Imperial College

October 1962
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CHAPTER |
Introduction

The study of vibrations, besides being important for its practical
applications, is also useful as a link between the various branches of
physics in which vibrations occur. Examination of the analogies
between electrical and mechanical vibrating systems can aid the
understanding of both electricity and mechanics, and this aspect of
the subject, particularly, is developed in this book. Technically,
vibrations and waves are of immense importance: the mechanical
engineer is often engaged in suppressing them because vibrations in
machinery can cause discomfort (e.g. in motor-cars) and even danger
(e.g. in unbalanced rotating machines), while the electrical engineer
exploits them to pass information and energy between distant places.

The simplest natural vibrating systems have two attributes: inertia
and stiffness-about-an-equilibrium-position. To a first approxima-
tion, the force tending to restore the system to equilibrium is often
proportional to the displacement and then simple harmonic motion
occurs. This kind of motion, which ‘can occur in systems which are
mechanical, hydraulic, acoustical, optical or electrical, partly ac-
counts for the immense importance of the sinusoidal function in
physics. If a natural vibrating system is set into forced motion, this
too will be approximately sinusoidal if the applied forces are sinu-
soidal functions of time. (Here the words ‘force’ and *motion’ are
used in a general sense which includes the electrical and other cases.)
Often, forced motions due to a variety of forces applied simul-
taneously seem to have some independence in the sense that the total
forced motion is approximately the sum of the motions due to the
forces applied one at a time. This leads to an abstraction from reality,
an idealization, known as the ‘ principle of superposition’, which puts
a wealth of mathematics at our service; where it does not apply, the
mathematical studies are much more difficult. The principle of super-
position further enhances the importance of the sinusoidal function
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2 Mechanical and Electrical Vibrations

because it is possible to analyse a wide range of time-varying applied
forces into sinusoidal components by Fourier’s series or integral. The
response to each component can be found separately, which is com-
paratively easy, and then superimposed by addition or integration.

No very great complication is introduced if the vibrations gradually
decrease in amplitude because of energy losses from the system,
provided that the dissipative forces can be assumed ta be proportional
to the velocities. (This is so for viscous friction and, via an analogy,
for electrical resistance but not for Coulomb friction unfortunately.)
With dissipative forces proportional to velocity, opposing the motion,
the amplitude decreases exponentially with time.

The sine, cosine and exponential functions are a unique class whose
derivatives and integrals are all members of the same class. This simple
mathematical fact is related to the physical fact that an oscillatory
driving force so often produces an oscillatory response. In many
cases, this fact also makes the solution of the equations of motion
comparatively simple because it is easy to guess a suitable mathe-
matical form for the solution!

The plan of this book is straightforward. In Ch. 2, simple vibrations
are studied and methods of calculating their natural frequency and
decay rates are given. The ‘quality factor’, Q, is used to describe the
decay of free vibrations rather than the older ‘logarithmic decrement’
but the relation between them is derived.

In Ch. 3, the analogies between various physical systems are ex-
plained so that the same mathematics can be applied to a variety of
cases: this is one of the main features of the book. There are two
analogies between electrical and mechanical systems. In the better
known one, the energy stored in the magnetic field of a coil is regarded
as similar to the kinetic energy of a mass, and electrostatic energy in a
capacitor is regarded as similar to potential energy. In the other
analogy, which is actually simpler to use although both are of equal
status, these associations are reversed.

Forced vibrations are studied in Ch. 4 where the complex-number
method of finding the steady-state (sinusoidal) forced vibrations of a
linear system is introduced. With this is associated the concept of
‘impedance’ used especially by electrical engineers but applicable
equally to mechanical vibrating systems. Anti-vibration mountings
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and electrical oscillators provide some of the iilustrative material, and
the phenomenon of ‘resonance’ is also described in detail.

Chapter 5 deals with a variety of ideas, particularly those associated
with the principle of superposition. This book only deals with the
vibrations of ‘lumped-constant systems’, as distinct.from ‘distri-
buted-constant systems’, and what this means is described at the
beginning of Ch. 5. Linear systems are also distinguished from non-
linear ones. .

In Ch. 6, more complicated vibrating systems — those with more
than one mode of free vibration — are introduced. Setting-up the
differential equations which describe such systems is the first topic,
and by exploiting the analogies of Ch. 3, nine related physical systems
are produced as examples. Then follows an account of the solution of
the differential equations, which begins with an example and con-
cludes with some remarks about the general case, including the
production of numerical results. As it may often be of interest merely
to know how many modes of vibration a system has, a rule is given for
ascertaining this without solving the differential equations. In the last
section, the physical behaviour of a particular mass-spring system
(one of the nine systems mentioned above as having related mathe-
matical descriptions) is examined in detail and the idea of ‘natural
coordinates’ is introduced. Second-year science and engineering
undergraduates might stop at this point, although some electrical
students may be ready to look ahead to Ch. 8.

Chapter 7 introduces more advanced work. The method of
analytical dynamics, as developed by Lagrange, provides a powerful
tool for the analysis of complex mechanical systems. Here, Lagrange’s
equations — in a form specially suited to deal with small vibrations
about a static equilibrium position ~ are derived from Newton’s laws
of motion, It is then possible to generalize many of the results of the
earlier Chapters and to see, for example, how it is that linear differen-
tial equations with constant coefficients are the appropriate mathe-
matical description for such a wide variety of mechanical vibrators.
Lagrange’s equations also provide a simple error-free method for
setting-up the equations for complex physical systems. The trans-
formation to normal coordinates, for a dissipation-free system, and
the orthogonal nature of the normal modes of vibration are discussed
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in geometrical terms. The free vibrations of a particle confined to the
vicinity of a fixed point by a field of force provide a simple example,
following which both the free and forced transverse-vibrations of a
loaded string are described. A train of goods wagons coupled by
springs, with no friction, executing longitudinal vibrations, is an
analogue of ihe loaded string and there are electrical analogues too.
‘Rayleigh’s principle’ by which the natural frequencies and vibration
shapes can be estimated without directly solving the differential
equations, the effect of dissipation on the normal modes, and the
applications of Lagrange’s equations to electric circuits, complete
this chapter.

Chapter 8, on the concepts of admittance and impedance, is almost
independent of Ch. 7. Those concerned with electrical systems will
already know how important these concepts are, but it must be
emphasized that the enormous wealth of electric circuit theory is
available, via the electromechanical analogies, for application to
mechanical systems. Mechanical engineers should not neglect this and
there is an analysis of the dynamic vibration absorber which should
be of interest. (On the other hand, electrical engineers should not
neglect the methods of analytical dynamics introduced in the previous
chapter.)

The early chapters have dealt with systems vibrating about a
position of stable equilibrium, but Ch. 9 introduces vibration about
a state of motion. Gyroscopes and mass-spring systems on a rotating
table are used as examples and have some surprising physical pro-
perties — surprising, that is, to those who previously have only studied
vibrations about a stable equilibrium position. The stabilization of
ships in rough seas by a gyroscope is one of the examples and serves
to illustrate a few remarks about ‘feedback’ and ‘control systems’.
To provide electrical analogues of these mechanical systems, a new
theoretical electrical element called the ‘gyrator’ is defined and its
practical physical realization, so far as it has been achieved, is
described. It proves convenient at this stage to introduce the ‘ideal
transformer’ as the electric analogue of an idealized mechanical
lever or pair of gear-wheels, ready for use in Ch. 10.

This final chapter provides something of a climax in analysing
systems containing both mechanical and electrical elements, namely



Introduction 5

‘electromechanical transducers’. These include both moving-coil
and electrostatic loudspeakers and microphones. Gyrators appear in
some of the equivalent circuits. Two different idealized transducers
are defined, and these, together with gyrators, transformers and
gyroscopic couplers form an interesting class of related devices.



CHAPTER 2

Simple Free Vibrations

SIMPLE HARMONIC MOTION

Simple harmonic motion is most easily defined as the projection of
circular motion of constant angular speed w on to a straight line in
the plane of the motion, If the point P in Fig. 1 moves in this way, the
projection of the rotating radius CP = r on to a line AB is

OY =y = r.sin(wt+4¢) .1

— @ C'L time

Fig. 1 Simple harmonic motion of Y along AB.

and the point Y is said to execute simple harmonic motion along AB.
In the diagram, CO is a convenient reference direction perpendicular
to AB, and O defines the central position of the motion of the point
Y on AB. P'is the position of Pattime ¢ = Oandif /. OCP’ = ¢ then
L OCP = wt+¢. A graph of y versus ¢ is shown at the right of the
diagram. r is called the AMPLITUDE of the motion, ¢ is called the
PHASE ANGLE and w the ANGULAR FREQUENCY OF PULSATANCE.
Alternatively, simple harmonic motion can be defined as the
motion of a point Y along a straight line AB subject to the condition
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that its acceleration is always directed towards a fixed point O on that
line, and has a magnitude proportional to its displacement y from O.
If the constant of proportionality is w?, this gives the differential
equation

d%
2 + wly =0 2.2
whose solution is known to be
y = asinwt+ bcos wt 2.3)

where a and b are determined by the initial conditions, namely the
velocity and displacement at ¢t = 0.
The relationship between Eqns. 2.1 and 2.3 is that

b
@+b =r* and tan-i- = ¢
a

The PERIOD OF OSCILLATION 7 is the time taken for the point P to
go once round the circle, hence

27 2n
" @ +/acceleration at unit displacement)

The FREQUENCY f'is the reciprocal of the period = and equals the
number of revolutions of P per unit time,

The differential equation (2.2) arises in many idealized physical
situations of which a simple undamped pendulum, a mass-spring
vibrator with one degree of freedom, and an L-C circuit are illus-
trated in Fig. 2. In the first two of these cases, the period = can be
obtained by applying Eqn. 2.4. In the electrical case, the equation

2.4

in which i is the current in the inductor and ¢ the charge on the
capacitor, expresses the fact that the sum of the voltage drops
round the loop is zero. Putting i = dg/dt and dividing through by L,
gives
d2
9,9 _
dt“ LC
which is of the same form as Eqn. 2.2 so that w? = 1/(LC).

0



8 Mechanical and Electrical Vibrations

SIMPLE PENDULUM
Acceleration due to gravity=g
For small displacements,

T =2m/(]8) and
w? = gfl

MASS-SPRING SYSTEM

y s m mass = m
R ﬂ spring stiffness
==

’ i = force/displacement

4)*» y=displacement = 2mv/(m]s)

w? = sim
i
. L-C circurr
L 2= C = 2my(LC)

9 wr=@o)?

FiG. 2 Simple harmonic vibrators.

DAMPED VIBRATIONS

Mechanical, electrical and acoustic vibrations do not go on for ever
atconstant amplitude* because of dissipation of energy by mechanical
friction, electrical resistance, radiation, etc. This is known as
DAMPING,

The simplest mechanical case to analyse is one where a force pro-
portional to velocity opposes the motion: for the mass-spring
system of Fig. 3a, such a force r(dy/dt), where r = constant, is pro-
vided by the viscous oil damper (as used on a motor car). The

* Internal vibrations of isolated molecules may seem to provide an
exception but a collision with another molecule or a photon will eventually
occur in practice and the energy will be changed.
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differential equation stating that the mass x acceleration = sum of
forces is

dyy  _dy
42 =0 2.5
mdt2+rdt+sy @.5)
and the solution is
y = AP cos(w,t+$) (2.6)
2
2 _ s_r S A 2
where Bl A iy @

so that the ‘natural’ angular frequency w, (i.e. that belonging to free
vibration) is reduced when damping is present. w is the value of w,
when there is no damping.

In Eqn. 2.6, 4 and ¢ can be determined from the initial values of
y and dy/dt. The amplitude 4¢>™* decreases exponentially by the
factor € in a time interval 2m/r: this interval is known as the TIME-
CONSTANT T of the decay.

Some examples of idealized damped vibrators which all obey the
same type of differential equation as 2.5 are given in Fig. 3. (In 3d,
the equation expresses the fact that the sum of the currents at node A
is zero.) Moving-coil galvanometers also obey a differential equation
in this class, the ballistic ones having the least possible damping. It
is therefore convenient to decide on a standard form of the equation,
and the following is chosen:

dzy wody 2

Here, the magnitude of the new dimensionless parameter Q, called
the Q-FACTOR, represents the quality of the vibrator in that if Q is
large, the damping-term is small. Taking the systems of Fig. 3 in turn,
the values of Q and w, are, respectively

(a) Q = womfr wg = /(s/m)
b) wyJ/r : V')
(0 woL/R 1/4/(LC)

@ Rf(woL) 1/V(LC)
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In each case, the natural frequency w,/(27) of the vibrator is (from

Eqgn. 2.7)
i
w? = w%(l —‘-@5) Q9

fa) =2
y dy
m—_ +r = +8sy=0
gtz a7
y
Viscous damper
r = force/velocity
Clamped. — Bearing
tb)
Rotary viscous
/, damper
Compliant shaft Flywheel of t°r°U§/an9u1ar
of stiffness 5 moment of velocity = r 3
=torque/angle inertia J. da‘e rde .
Angular displacement = 8 / de? tr at 560
L c R
+q -9 L dl + +1
) p Ri 3 / dt=0
Rd
of, + ._‘1+ Lg=0
dt2 9"
c

where ¢ = / edt = magnetic

MAAN
=R
| flux linkage with coil
e ——I

Fic. 3 Simple damped vibrators.

and the time-constant of the decay is
T = 2Q/w, (2.10)
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The number N of cycles of the vibration needed for the amplitude to
fall to 1/eth of its value is the number of cycles in a time interval
equal to T, thus

_T_200._Q
N—’—r_wOZ'rr_ A/( 4Q2)

If Q is greater than (say) 4, the value of N is very close to Q/.
A satisfactory definition of the Q-factor of the vibrator, is found
by considering Eqn. 2.8.
coefficient of the y-term 2

If =
coefficient of d2yjdr2 0

. s s .11)
(coefficient of d“ y/d|

0" (coefficient.of dy/d&y
This somewhat formal definition, syggested by Morris'V, is free from
the objections associated with somg of the Aeﬁmnons cqmmonly used
by radio engineers. One such definition j ;s

2
the fraction of the energy dissipated per cycle

then, Q=

Q=

2.12)

energy dissipated per Tyelu.

For a mechanical resonator, the peak energy referred to may be
either potential or kinetic according to whether it is calculated at the
instant of maximum displacement or maximum velocity. Similarly,
for the electrical case, the peak value of either the electrostatic or
magnetic energy may be taken. Thus, for the electrical case of Fig.
3c, if the R.M.S. current is I and the peak current is 7,,

iLI2 iLI2 _2rL _ oL
"IRIZz  Rr R
This calculation is only meaningful if the damping is slight because
no distinction has been made between w, and wy, nor between the

peak values at the beginning and end of a cycle, nor of the departure
from sinusoidal conditions due to damping. Thus Eqn. 2.12, while

- o ( peak value of energy stored ’
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useful in providing a physical interpretation of Q, does not give a
clear and unambiguous definition of it. Equations 2.11 are to be
preferred because they apply to both light and heavy damping.

Other measures of the quality of a vibrator are the DAMPING
FACTOR 8, which is the reciprocal of the Q-value, and the
LOGARITHMIC DECREMENT 9. Thelatter haslong been associated with
ballistic galvanometers in physics textbooks: the ratio of successive
swings on opposite sides of the rest position is measured and its
natural logarithm is defined as the logarithmic decrement y. The ratio
is found from values of €~/ taken at two times 4 apart, hence,

vy = log(ratio) = 37/T
_ half period of free vibration
" time constant of decay

L)
" 20/w
_ ™
=20
No distinction is made between w, and wy as light damping can be
assumed.
Whatever method is adopted for solving the differential equation

(2.8), it will always be necessary to find the roots of the so-called
CHARACTERISTIC QUADRATIC EQUATION

(2.13)

P gptef=0 2.14)

These roots determine the natural angular frequency w, and time-
constant T of decay:

I
|
S
4+
.,
S
—_
|
F -

Q —
N
.

I
<
~~
|
=

1
= —iijw,, (2.15)



