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Preface

Although this book is based primarily on the work of statisticians, the
author is a chemical engineer. This may suggest the interdisciplinary char-
acter of the work, which hopefully is broad enough in viewpoint to interest
not only engineers and statisticians, but economists, applied mathemati-
cians, operations analysts, and behavioral scientists as well.

Optimization—finding the best way to do things—is obviously of in-
terest in the practical world of production, trade, and politics, where small
changes in efficiency can spell the difference between success or disaster
for any enterprise, be it neighborhood store, mammoth industrial complex,
or governing political party. Today as always many important decisions are
made simply by describing the system under study as precisely and quan-
titatively as possible, selecting some measure of system effectiveness, and
then seeking the state of the system which gives the most desirable value
of this criterion. Since description and understanding of systems is the tra-
ditional task of the engineers, economists, and other applied scientists for
whom this book is written, it would be presumptious to discuss such a
broad topic in this brief work. Moreover, choosing a measure of effective-
ness is in most cases either completely obvious or so clouded by nonquan-
titative value judgments as to be extremely difficult, and so we do not deal
with this delicate question either. Instead we concentrate entirely on the
technical problems associated with the process of optimization itself.

Over a span of almost two centuries, the only mathematical methods
known for handling optimization problems were the classical differential
and variational calculus. With the rise of “operations research” since the
Second World War, there has been renewed interest in optimization methods
for dealing with problems not solvable by classical methods. Many of these
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techniques—linear and dynamic programming, for instance—have already
been extensively described in technical books. However, a search for the
optimum of a function more or less unknown to the observer necessarily
involves experimentation, for the only way to gain information about such
a function is by direct measurement. For this reason we have given the
name optimum seeking procedures to the strategies guiding search for the
optimum of any function about which full knowledge is not available. Such
functions arise not only in situations where direct observations must be
made on a physical or economic system, but also in theoretical studies
where the mathematical form of the criterion of effectiveness is so compli-
cated that it can only be evaluated directly on a high speed computer.

This book is based on material presented to senior engineering students
whose mathematical training comprised only standard calculus courses, and
anyone who can take a partial derivative should be also to follow our ex-
position. Indeed, the development depends very little on the calculus, the
mathematics being rather simple, although probably a bit unfamiliar to en-
gineers and economists. The book is intended not only as a text for under-
graduate science students, but also as a reference book for practicing eco-
nomists, engineers, and statisticians who may not have been able to keep
up with the rapid development of experimental optimization techniques.

Problems in experimental optimization are good vehicles for learning
about logic, multidimensional geometry, and elementary probability theory.
As consequences of the technical treatment certain general decision prin-
ciples are developed which may be useful even when there is no time for
detailed and rigorous analysis. For example, study of experimental optimi-
zation problems involving a single independent variahle gives insight into
the important minimax concept as well as the somewhat startling technique
of randomization. Close examination of multivariable problems unearths
some rather disturbing facts about graphical reasoning and the paradoxes
that can arise from failing to realize that even engineers and economists
often must work with non-Euclidean space. Analysis of interactions between
variables shows how one may blunder onto a false optimum—one which
appears optimal but really isn't. Stochastic approximation theory illustrates
just how experimental error can slow down a search. It also indicates how
one might weight new observations with old ones to improve operations.
As might be expected, changes should be more and more gradual as ex-
perience is gained, and the harmonic sequence 1, &, 4, },... turns out to
be particularly significant in weighting successive observations to cancel out
random errors.

The style of presentation has been greatly influenced by the ideas of
G. Polya of Stanford University in his books How to Solve it and The
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Mathematics of Plausible Inference. Thus we have tried to show how the
originators of the techniques discussed might have discovered them. As
Polya suggests, this approach, while requiring more words than a formal
proof, helps develop creativity in the student. We have found that present-
ing the material this way has in fact stimulated students to original and
valuable ideas, and it is a pleasure to acknowledge here the contributions
of undergraduates Roger Ben Haim at the Ecole Nationale Supérieure des
Industries Chimiques, Nancy, France, and of Leaton T. Oliver and Rafael
B. Cruz-Diaz at the University of Texas. While acknowledging the help of
others, let us thank Professors J. Kiefer of Cornell University, Thomas E.
Corrigan of Ohio State, Irving F. Miller of the Polytechnic Institute of
Brooklyn, and William A. Graves of Colorado State, who have caught
several mistakes and suggested better methods of presentation. Particular
credit is due professors Robert J. Buehler, B. V. Shah, and Oscar Kem-
phorne of Iowa State University, who let us see their material on the method
of parallel tangents before its publication. Industrial colleagues have also
made worthy contributions: S. M. Johnson of the RAND Corporation,
Robert Hooke, T. A. Jeeves, and Cy Wood of Westinghouse, Ed Blum of
Pure Oil, Shahen Hovanessian and the group at T-R-W Computers, and
our old friend Gene Motte of Union Oil.

We must also thank the colleagues who brought important material to
our attention which might otherwise have been overlooked: Leroy Folks of
Oklahoma State, Jim Carley of The University of Arizona, David Himmel-
blau of The University of Texas, Dale Rudd of The University of Wiscon-
sin, and Alvin Harkins of the Monsanto Chemical Company. A citation for
courage should be awarded Professors Robert Adler and Earl Gosé of the
Case Institute of Technology, who were the first to use this book for part
of a course on optimization theory. The author is also indebted to the in-
stitutions which suppoited him both morally aud financially during the con-
ception, classroom presentation, and writing of the book. They are, in order
of appearance, The U.S. Education Commission in France, who supported
a Fulbright lectureship at the Ecole Nationale Supérieure des Industries
Chimiques in Nancy, France; the Israel Institute of Technology (Technion)
in Haifa, Israel; The University of Texas, Austin; the National Science
Foundation, who invited the author to present this material at the 1962
Process Dynamics and Optimization summer course for Engineering Profes-
sors held at the University of Colorado in Boulder; and Yale University.
To the shade of the poet Henry Wadsworth Longfellow, who in his poem
“Excelsior” also considered the problem of attaining the heights, the author
offers his humble respects.

DouGLAss J. WILDE
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Search Problems '|

The shades of night were falling fast,
As through an Alpine village passed
A youth, who bore, ‘mid snow and ice,
A banner with the strange device,
Excelsior !
—Longfellow

A scientist confronted by a system more or less unknown to him gains
knowledge about it by making experiments. He fixes the variables under
his control at settings of his choice, notes down the values of any factors
he is unable to regulate, and then observes the results. In general, of course,
there may be additional variables influencing the outcome which can be
neither measured nor controlled; these are the factors behind the experi-
mental error. Scientists are not the only people concerned with studying
unknown systems, as Table 1-1 illustrates.

Although an experimental approach has always characterized the
empirical sciences and may date all the way back to Eve’s historic in-
vestigation of the apple in the Garden of Eden, there recently has been
a renewal of interest in the basic nature of such investigations, often called
“black-box” problems for reasons shown in the last line of Table 1-1. The
next to last line, dealing with the mathematician’s study of functions, gives
the nomenclature and notation we shall use in discussing this problem.

In this book we are not particularly interested in finding out all there
is to know about the system. We merely wish to determine what settings
of the independent variables will yield the optimal (maximum or minimum,
whichever is desired) value of whatever dependent variable is taken as a
criterion of effectiveness. Let us then consider optimization problems in
which the functional dependence of the efficiency criterion upon the
adjustable variables is not known. Assume further that the total number
n of experiments we can perform is limited. Any set of instructions for
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2 Search Problems  §1.01

Table 1-1
INVESTIGATION OF UNKNOWN SYSTEMS
, Uncontrollable
. Adjustable Unknown
Investigator System Factors Ib‘{:ztc tl;!;;asurable Factors Results
Farmer Farmland Fertilizer Weather Soil . Crop .
: condition quality

Physician Patient Medicine Pulse rate Infection Blood count
Engineer €hemical Temperatures Raw material Activity of Product

reactor composition catalyst yield
Detective Suspect Interrogation Material Character  Testimony

evidence of suspect
Senator Senate Speech Current events Personalities Votes on
of col- bill
leagues
Sales manager Market Price of Competitors’ Public taste Sales
product prices

Mathematician Function Independent Parameters Randpm Dependent

f(x,p,r) variables x r variables variable

r y=f (x,p,71)

Anybody “Black Input knobs  Gauges State of Output

box”’ box readings

placing the n experiments x;, x, . . ., x, will be called a search plan, and
any investigation seeking the optimal value of an unknown function will
be called a search problem. We want of course to find, from among all
possible search plans, the one which looks for this optimum in an optimal
manner. Thus we are not only trying to optimize the function; we are also
optimizing the optimization procedure.

Search problems occur for several reasons. The theory describing a
real system is rarely perfect, and many approximations are made during
conception, design, and construction. Moreover, important parameters
may change as time passes. And even with perfect theory and invariant
parameters, errors of measurement often obscure the true relationship
between output and input. While scientific theory is useful for finding
nearly optimal conditions, the preliminary estimate often can be improved
by experimenting directly with the system itself, be it a set of equations,
a steel mill, or a truck farm.

1.01. Types of search problem

Search problems can be classified according to their number of in-
dependent variables and to whether or not experimental error is present.
Except for the last chapter on stochastic approximation, we will deal with
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the error-free or deterministic case. When there is but one independent
variable and no random error, elegant and powerful methods for finding
an optimum are available; these will be described in Chap. 2. Unfortunately
such procedures cannot be extended to problems with more than one
independent variable, and many different techniques have been developed
for handling the multivariable case. These will be described for the most
part in Chaps. 4 and 5 after an introduction to multidimensional geometry
in Chap. 3. The presence of experimental error slows down a search con-
siderably and nullifies the essential advantage that univariable problems
had over multivariable ones in the deterministic case. Thus in Chap. 6 all
types of error-ridden situation are treated alike, regardless of the number
of variables.

1.02, Roots and peaks

The problem of locating a peak is very much like that of finding a root.
Many root-finding situations, where computationally convenient, have been
formulated as minimization problems. Consider, for example, m simultane-
ous equations

‘Pj(xlr---sxk)=0 (J=12,...,m)
in the k¥ unknowns x, through x,. One can find.solutions to this system
of equations by minimizing the function @ obtained by adding the squares
of the left members ¢,. More properly, since the solutions may be complex,
the function to be minimized should be

E
Q= E#’ﬂ’j

where g, is the complex conjugate of ¢ ;o If k’= m, then at the, solution
@ will be at its minimum value zero. But if there are more equations than
variables, as is usually the case in curve fitting problems, the minimum
value of @ may not be zero. Such a “solution” would represent a least-
squares approximation.t
Just as root problems can be transformed into exercises in minimiza-
tion, optimization problems can be solved by root-finding techniques. This
is because the first derivatives of a continuous function must vanish at an
extreme point. Hence by working with derivatives of the function to be
optimized one can sometimes use well-known root-finding procedures to
locate the optimum. The reader should keep in mind that the methods
developed in this book, while specially suited to optimization problems,
could perhaps be adapted to root location as well.
1 A. D. Booth, ““An Application of the Method of Steepest Descents to the Solu-

tion of Systems of Nonlinear Simultaneous Equations,” Quart. J. Mech. Appl. Math.,
2, 4 (1949), p. 460.
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1.03. Deterministic problems

Search problems having no unknown or random factors will be de-
scribed as deterministic. Assuming that the investigator can correct for
any uncontrollable but known factors affecting the system under study,
we lose no generality in treating a simplified system having only adjustable
variables on which depends some criterion y to be optimized.

In many systems the experimental error cannot be neglected. Yet there
are interesting practical optimization problems that are wholly determin-
istic, as when the criterion of effectiveness is too involved to be optimized
directly by such standard techniques as the differential calculus. Economic
studies and engineering design problems for example, must usually be
considered search problems because of the complexity of the mathematical
model used—the equations, tables, graphs, or computer codes. When, as
is often the case, the model involves no random elements, the search
problem is entirely deterministic, even if the key figures are only approx-
imations based on shaky assumptions, rules of thumb, and imperfect data.
It would of course be unwise to expend very much searching effort on a
model of questionable accuracy. But this does not affect our problem here,
which is how to conduct the search effectively.

1.04, Stochastic problems

If experimental error cannot be neglected, th: :roblem will be called
stochastic, a word meaning that random factors .re involved. Stochastic
problems are naturally more difficult than deterministic ones, although not
as hard as one might think at first. We shall see that it is possible to
consider a stochastic problem as a deterministic one with noise, or experi-
mental error, superimposed. In this way the problem of convergence of
the deterministic part can be treated separately from that of the nullification
of the noise.

The main effect of random error is to slow down the speed at which
a search can be conducted and still be sure of eventually finding the
optimum. Stochastic procedures, being very deliberate, should not be used
in the absence of experimental error, for deterministic methods are much
faster. This point has not been well understood in the past, and stochastic
procedures have sometimes been applied to deterministic problems with
disappointing results. One can avoid misapplication by remembering that
stochastic methods must face a convergence problem that simply does not
arise when there is never any danger of a mistake. Thus speed of conver-
gence, which is the only consideration in deterministic problems, is only
of secondary importance when there is noise.
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1.05. Simultaneous and sequential procedures

Search plans fall naturally into two mutually exclusive classes which
we shall call simultaneous and sequential. Plans specifying the location of
every experiment before any results are known will be called simultaneous,
while a plan permitting the experimenter to base future experiments on
past outcomes will be called sequential.

Suppose, for illustration, that ten economists were available to analyze
a capital investment program. Let us say that each economist, if given a
tentative distribution of the capital, can, after about a week of calculation,
estimate the return on the investment. If the group has only a week to
prepare a recommendation, then a ten experiment simultaneous search
plan is needed to pick the cases to be studied, for no one has the time to
wait for the results of one case before choosing the conditions for another.

When this can be done, it is much more effective to use a sequential
search plan. If the ten economists could team up and together analyze a
case in half a day (assuming a five day week for economists), they could
locate the optimum as effectively after analyzing only four cases sequential-
ly as they could by analyzing ten simultaneously. And if instead of going
home on Tuesday they continued analyzing cases all week, their ten
sequential cases would be almost eighteen times as effective in locating
the optimum as would the ten simultaneous cases—provided the sequential
search plan were the optimal one. We shall see that the advantage of
sequential plans over simultaneous plans increases exponentially with the
number of experiments. The branch of statistics known as experimental
design is usually concerned more with simultaneous than with sequential
procedures, and since many good texts on this subject are available, we
shall not spend very much time on it.

1.06. Exploitation of partial knowledge

When absolutely nothing can be assumed in advance about the behavior
of the system, all an investigator can do is take random measurements
and hope for the best. Fortunately, natural systems rarely behave so
mysteriously, and usually a few things can be assumed before making any
experiments. Thus the criterion of effectiveness is often a continuous func-
tion of the independent variables; many times it can be assumed to have
but one peak in the region of interest. This book shows how to exploit
such partial knowledge to develop efficient search techniques. In order to
do this we shall have to perform a bit of what the mathematicians call
analysis of functions. This means characterizing, in precise, quantitative
terms, such intuitive concepts as unimodality (single-peakedness), smooth-
ness, convexity, and similarity. We shall also.need to describe—and extend
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to many dimensions—such geometric or even geographic ideas as peak,
valley, ridge, pass or saddle, curvature, and slope. Like any good explorer,
we can find our goal sooner if we know something of the lay of the land.

1.07. Multimodadlity, constraint, and time

After scanning the table of contents the reader will perhaps notice
that several interesting topics related to experimental optimization are not
discussed. For example there is no attempt to tackle multimodal problems
having more than one peak because such situations have not been studied
with any success so far. Anyone confronted with such a problem nfust at
present try to isolate the various peaks and explore each of them individu-
ally. Hopefully, methods for handling multimodality will be available soon.

Likewise, there is no discussion of constrained optimization problems,
in which certain combinations of variables are forbidden which would
otherwise be optimal. In spite of its importance, this topic was omitted
because there are already many books and articles discussing it. Readers
interested in constrained optimization problems would do well to examine
the literature on linear programming, nonlinear or mathematical program-
ming, and dynamic programming, some of which is listed in the biblio-
graphy at the end of this chapter.

We will confine ourselves here to static problems, those in which the
system does not change as time passes. A great deal of research on the
dynamic case, where changes do take place, is now under way; some of
this is listed in the bibliography. Dynamic problems, often involving
adaptive control, have not been discussed here because, although much
progress has been made on them, there is still much to be done. Moreover,
the theoretical background needed, being still too strong for engineering
seniors, would be inappropriate here.

1.08. Representation and scaling

Before beginning a search one should devote a little time to the choice
of a good representation of the function and to the choice of scales of
measurement. We are paraphrasing here the very sensible remarks on
these matters expressed by Buehler, Shah, and Kempthorne.t They dis-
tinguish Between the relationship between variables and the various repre-
sentations of the relationship. For example, if we are investigating the
dependence of chemical process yield on the adjustable operating variables,
pressure and temperature, and if y is yield in grams, p is pressure in

1 R.J. Buehler, B. V. Shah, and O. Kempthorne, “Some Properties of Steepest

Ascent and Related Procedures for Finding Optimum Conditions,” Iowa State Uni-
versity Statistical Laboratory (April 1961), pp. 8-10, 18.
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atmospheres, = is the natural logarithm of p, and ¢ is absolute temperature
in degrees Kelvin, then the following expressions are two different repre-
sentations of thé same relationship.

y =@, 1) = y[1 — alp — po)* — b(t — )] (1-1a)
y = ‘I’(”’ )= yoll — a(e” — Po)2 — b(t — ;0)2] (l’lb)

A good rule to follow is to choose a representation that can be approx-
imated readily, at least in the neighborhood of the optimum, by a fairly
low degree Taylor expansion. This is because most search techniques
involve constructing approximations from measured estimates of first and
second derivatives. By this rule, the quadratic representation Eq. (1-1a)
is preferable to the other one involving the transcendental e* term.

Another good rule is to prefer representations in which the factors do
not interact. This criterion is satisfied by both Eqgs. (1-1), since there is
no term involving products of the two factors. However, the following
representation, in which

x, = 3(p — po) + 3(t — 1)
and
Xy = 3(p — po) — 3(t — 1)
shows interaction between x; and x; because of the term x;x».

y = 0(xy, x;) = po[1 — (a + b)(x} + x3) — 2(a — b)x;x,]  (1-2)

Methods for removing interaction are described in Secs. 3.16 and 5.16.
Finally it is good to select scales of measurement in which a unit
change in one factor at the optimum gives the same change in the dependent
variable as a unit change in any other factor. Thus if representation of
Eq. (1-1a) were used we would want the scales of p and ¢ to be such that

a(p — po)® = b(t — t,)* (1-3)
This scaling rule, developed for a particular search procedure described
in Sec. 4.13, turns out to be suitable for other procedures as well.

In geometric terms, these rules together tend to make the contours of
the dependent variable spherical—symmetrical in all factors. It would of
course rarely be the case that enough is known about the function to
permit application of the rules. They are intended merely as a guide to
educated guesses that tend, if accurate, to speed up the search procedure.
Figure 1-1 contrasts a good and a bad choice of scale and representation.

1.09. Plausible reasoning

Before proceeding further, permit us a comment about the manner of
presentation. Since we would like to see optimization theory covered in
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Fig. 1-1, (a) Original rectangular coordinates. (b) Preferable semi-logarithmic
coordinates with scale change.

undergraduate engineering or economics curricula, where the students are
not always used to formal logic, we have tried to make our definitions
precise and our arguments rigorous. But, following the method of G.
Polyat in his books on plausible reasoning, we have avoided the usual
mathematical mode of exposition involving terse statement of formal
theorems followed by formal proofs. As one of our purposes is to stimulate
the student’s creative imagination, we build up the results in the more or
less intuitive manner of the original researcher groping toward new con-
cepts. The reader who is more concerned with results than with how they
are obtained will do well to skip over some of the details given. But the
man who might want to do research in optimization theory—and there’s
much to be done—may prefer to develop his “feel” for the subject by
closely following our plausible, if not always elegant, exposition and by
working out formal proofs on his own.
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