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INTRODUCTION

The subject matter of the 1422 entries in this dictionary covers two
general categories. First, a detailed treatment is provided of the fol-
lowing standard high school and college mathematics material: arith-
metic; elementary, intermediate, and college algebra; plane and solid
geometry; plane and spherical trigonometry; plane and solid analytic
geometry; differential and integral calculus. Second, a wide selection
of items is provided from more advanced mathematics, including the
following fields: logic and fundamental concepts; theory of equa-
tions, theory of numbers, and modern higher algebra; advanced
calculus; geometry and topology; probability and statistics; recent
areas such as computer sciences, information theory, operations
research, and so on. |

The explanations of entries range from brief definitions of a few
lines to expository discussions of various lengths. Several goals
motivated the treatment. The dictionary was to satisfy the immediate
technical needs of the user. Mathematics was to be presented as a
unified, ever-growing, and stimulating body of knowledge. The
reader who was a nonspecialist in mathematics was to be served in
advanced mathematics and in new fields (such as computer sciences)
that were significant for the future. In terms of its broader objectives,
the present book may be viewed as an outline or compendium of
mathematical ideas correlated with a large collection of specialized
items. There are concern and activity in the educational field with
regard to revitalizing and modernizing scientific training and creating
a better understanding of science; it is hoped that this volume will
contribute to these aims in mathematics.

The dictionary is intended for several audiences. First, it is
designed to meet the educational needs of the participants in high
school and college mathematics—the student and the teacher. It serves



as a convenient summary of the concepts, formulas, and techniques
studied in courses; beyond this, it may be used as an avenue for the
student to step into fresh realms of mathematical ideas. The diction-
ary is also intended for many professional workers in behavioral and
social sciences, biological and physical sciences, and engineering;
it aims to satisfy both their needs in techniques of mathematics as
well as their interest in advanced concepts and recent developments.
Finally, it should serve the general reader with an intellectual inter-
est in mathematics.

Several practices were adopted to make the dictionary as useful
as possible for the intended class of readers. Specific formulas are
given for solving problems, and examples and diagrams are called
upon frequently for clarification. Attention is confined largely to
terms and definitions that are in common use and that are pertinent
for the reader. An attempt is made to reduce to a minimum the need
to use cross references to find a given term. Related information is
often introduced to stimulate interest; this, for example, may be of
a historical nature or it may connect the given term to other terms.
With regard to the question of technical rigor, the following view
was adopted: in the case of an entry for which a formal definition
meeting the requirements of the professional mathematician was
judged as being too technical, a balance was attempted between
mathematical precision and an informal description meaningful to
the reader; when it seemed helpful, both an informal and a formal
description were given.

Various reference works were helpful in the preparation of this
dictionary. Especially useful were the following two: (1) The Devel-
opment of Mathematics, by Eric T, Bell, 2nd edition, McGraw-Hill,
New York, 1945; (2) Mathematics Dictionary, edited by Glenn
James and Robert C. James, 2nd edition, D. Van Nostrand Co.,
Princeton, New Jersey, 1959.

The author is happy to express his gratitude to his generous
colleagues, Dr. Richard E. Bellman and Dr. Mario L. Juncosa, for
their comments and advice in the writing of this book. He also wishes
to thank Professor H. S. MacDonald Coxeter for his suggestions on
a number of entries, and Professor Kenneth O. May for his general
remarks on an initial version of the manuscript. His gratitude is



extended to Mr. Oscar Tarcov, General Editor of the Crescent Dic-
tionaries, and Miss Lee Deadrick of The Macmillan Company for
the opportunity to write one of the dictionaries in this series, and for
their solicitous cooperation in many matters connected with the
publication of this book. Thanks are also expressed to the many others
who in their individual ways helped to create whatever qualities this
work may possess.

William Karush
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A GUIDE TO THE USE
OF THE DICTIONARY

All entries have been entered in strict alphabetical order.

Boldface type has been used throughout for all words and terms
for which definitions are included. The cross references are planned
to facilitate fuller exploration of a subject beyond an initial, specific
question. Therefore, in addition to main entries, all cross references
appear in boldface; a cross reference may either be designated as
such, or it may occur as a word or phrase in a definition.

Italics have been used to emphasize certain words and phrases
within the body of the definition.

Synonyms are indicated by the abbreviation (syn.)

References for further reading are indicated at the end of certain
entries by the abbreviation (Ref.) together with the appropriate
number as listed in the List of References beginning on page 293.
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Abacus (Syn.: Counting Board) A
device of ancient origin used for re-
cording numbers and calculating. It
has had several forms during its his-
tory, but the most familiar one is a
frame with several parallel rods and
individual counters that are free to
slide along the rods. One rod is for
the units place, the next for the tens
place, and so on; in carrying out a
calculation the counters are moved
back and forth on the rods. The
abacus was widely used in Europe by
merchants up to the latter half of the
thirteenth century, when it began to
yield to the superior arithmetic of
the Hindu-Arab decimal number
system. Ref. [19, 24, 56, Vol. 1].

Abscissa The first, or horizontal co-
ordinate, x, of a pair (x, y) of Carte-
sian coordinates in the plane. The
second, y, is the ordinate.

Absolute Convergence An infinite
series a, + a, + a; + ++¢ converges
absolutely in case the series

la] + ja) + fas + -
of absolute values converges. Abso-
lute convergence implies (ordinary)
convergence of the given series. An

example of an absolutely convergent
series is:

=4+ 32 =@ -
(the series of absolute values, 1 +
1+ 4+ &) +... isaconver-

gent geometric series). See Condi-
tional convergence.

Absolute Inequality See Uncondi-
tional inequality (syn.).

Absolute Maximum (Minimum) Of
a function, the largest (smallest)
value. See Function of real variable.

Absolute Number See Constant
(syn.).

Absolute Value (Syn.: Numerical

value) The absolute value of a
number, geometrically, is its distance
from the zero point on an ordinary
number scale (regardless of direc-
tion). For example, the absolute value
of4is4, of —51s5,and of 0is 0. The

{35 o e |
~

L L 11 i 1 1 L i1 L L
~5 0 4

absolute value of a is denoted by
|a|; for example,

|4 =4,]-5] =5,]0] =0.
See Linear coordinates.

A formal definition of |a| is: if ais
positive or zero, then |a| = a;ifais
negative, then |a| = —a. Forexam-
ple, | —4} = —(—4),0r4.

The following properties of abso-
lute value are important:

M ja| 20

@ fa-b| = |a] +|b;

@) la +b] < |a] + |b]-
As an example, verifying these, let
a= —2and b = 7; by (2), | — 14|
= | —2|+|7|,0r 14 = 2-7; by (3),
(=2 + 7| < |=2] + |7],0r5
<247

Absolute Value of Complex Number
(Syn.: Magnitude; Modulus) Fora
complex number a + bi, the absolute
value is the (real) number \/a? + b%;
it is the distance of the complex num-
ber from the origin, when the com-
plex number is represented as the
point with rectangular coordinates
(a, b). For example, the absolute
value of —2 4 3iequals \/4 + 9, 0r
V/13. The absolute value is denoted
by |a + bi|. The following proper-
ties are important:
M) ja+bi| >0
@) |(a + bi)c + di)}

= |a 4 bi| * |c + di|;
3 J(a + bi) + (c + di))

< |a + bi| + |¢ + di]

A



Absolute Value of Vector

(this last expresses the “triangle in-
equality,” namely, that the length of

(o +bil

{0,0)

a side of a triangle is not greater than
the sum of the lengths of the other
two sides).

Absolute Value of Vector The
length of a vector V; it is often de-
noted by | V|.

Abstract Mathematics Mathema-
tics as knowledge apart from its
meaning in terms of physical or con-
crete experience. Such experience
may guide the development of a
mathematical theory, and it may pro-
vide a helpful way to think about
mathematical concepts; however, the
conclusions of an abstract theory are
expressed and deduced by logical
means which are independent of
“real” or “specific” interpretation.
For example, it may be helpful to
regard a number as a physical quan-
tity, but the theory of real numbers
can be developed as a deductive
theory which requires no reference
to this, or any other, specific mean-
ing. See Axiomatics, Deductive
theory, Mathematical system, Math-
ematics. Ref.[71].

Abstract Space In general, a formal
mathematical system of a geometric-
like nature. It is a deductive theory
whose undefined terms and axioms,
typically, “abstract” the features
common to several more specific, or
more familiar, systems; the latter
serve as models of the abstract sys-
tem. See Hilbert space, Metric
space, Vector space.

Abundant Number (Syn.: Redun-
dant number) See Perfect number.

Acceleration The rate of change of
velocity with respect to time 1. If the
motion of a particle in the plane is
given by x = x(f), y = y(¢), then the
second derivatives (& x)/(dt?), (d*y)/
(dr®) give the components a., a, of the
acceleration along the x-axis and
y-axis, respectively. The absolute
magnitude of the acceleration is
Va.? + a7 this equals the second
derivative (d%s)/(dt?) (where s(¢) 1s
distance along the curve from a fixed
point), except possibly for sign.

Accuracy Of an approximate num-
ber, a numerical measure of its close-
ness to the true value for which it
stands. For example, 3.1416 is com-
monly used as an approximate value
of 7; it is said to be accurate, or cor-
rect, to four decimal places, meaning
that the true value of = lies between
3.14155 and 3.14165. A decimal ap-
proximation, when all its digits are
significant, is correct to the 1ast deci-
mal place shown, and the error is
then no more than } the unit of the
last place.

Accuracy of Table The accuracy of
the numerical entries in a table, such
as a table of common logarithms or
of the values of a trigonometric func-
tion. Nearly all entries in such tables
are approximate, because the true
functional values are typically un-
ending decimals. See Table of func-
tion.

Acute Angle An angle of numerical
measure less than 90 degrees.

Acute Triangle A triangle with each
of its angles an acute angle.

Addend Any one of the individual
constants of an expressed sum of
constants. Forexample,in2 + 3 + 5,
the addends are 2, 3, and 3.

Addition Addition of numbers is
one of the fundamental operations of



arithmetic. The result of combining
two numbers a and b by addition is
the sum of the numbers, and is de-
noted by a + b (the symbol “+”” was
introduced about 1500). The sum of
two whole numbers, say 3 and 5, is
interpreted as the number of objects
in the collection obtained by putting
together a collection of 3 objects and
a collection of 5 other objects. As the
concept of number is extended to
negative numbers, rational numbers
(fractions), and, finally, the full set of
real numbers, the meaning of addi-
tion is similarly extended. The rules
of arithmetic provide ways of carry-
ing cut addition of numbers in vari-
ous forms. Algebraic addition, for
example, shows how to add signed
numbers. See Common denomina-
tor, Transfinite number.,

Addition of numbers is a binary
operation—it combines two things
(numbers), to produce a single thing.
This operation has certain basic
properties. One is the existence of the
particular number 0 which leaves any
number a unchanged under addition;
that is, a + 0 = a (0 is called the
“identity element” of addition). An-
other property is that addition is as-
sociative; thatis{a + b) + ¢ = a +
(b + ¢). Also, addition is commuta-
tive; thatis,a + b = b + a. The as-
sociative and commutative proper-
ties account, for example, for the fact
that a sum of any number of terms
can be checked by adding in the re-
verse order. Such general properties
and others that account for certain
aspects of the behavior of numbers,
are treated in higher algebra in the
study of the field.

Addition Formulas (trigonometry)
Formulas which express a trigono-
metric function of the sum (or dif-
ference) of two angles in terms of
the functions of the individual angles.

Addition of Vectors
The most commonly used are the fol-
lowing:
sin(A + B) =sinA4 cos B  cosA sinB
sin{4 — B) =sin A4 cos B — cos A sinB
cos(A + B) = cos Acos B — cosAdsin B
cos(A — B) = cos 4 cosB 4+ sinAdsinB

tanA + tan B

tan(4 + B) = ——nrv—"——
A + B) 1 —-tanAtan B
tan(4 — B) = tanA4A — tan B

1 + tan A tan B'

Addition of Algebraic Expressions
In adding algebraic expressions, sim-
ilar terms can be combined by adding
their coefficients; for example (3x? —
2xy + 3 + (¥* + 3xy — S)can be
reduced to 3x* 4+ xy 4+ y* — 2 by
this means. See Common denomi-
nator for addition of algebraic frac-
tions.

Addition of Angles ThesumA4 + B
of two directed angles (rotations) 4
and Bis an angle constructed as the
rotation 4 followed by the rotation

- B (positive angles being counter-

clockwise and negative angles, clock-
wise). The measure of A + Bis the
sum of the measures of A and B. For
example, the sum of a 60° angle and

2 YA+

a 30° angle is a 90° angle; the sum of
a 60° angle and a —30° angle is a
30° angle.

Addition of Complex Numbers
Complex number.
Addition of Sets See Union of sets.

Addition of Vectors {(Syn.: Compo-
sition of vectors) When vectors V,,
Y, are represented as directed line
segments, their sum, or resultant,

See

3



Adjacent

V, 4+ V, is the directed diagonal of
the parallelogram whose adjacent

sides are V, and V, (this is the paral-

lelogram law). When plane vectors

V,and V, are represented by number

pairs, as (x,, y,), (x., y,), their sum is

the vector (x, + X,, y, + ¥,), ob-

tained by adding like coordinates;

this rule applies to vectors in a space

of any number of dimensions.

Adjacent Two angles are adjacent if
they share a common vertex and a
common side, but do not overlap.
Two sides of a triangle, or polygon,
are adjacent in case they share a
common vertex.

Aleph-Null, X, In the theory of
sets, the smallest infinite cardinal
number; it is the cardinal number of
the unending sequence of whole
numbers {1, 2, 3, 4,...}. (X is the
first letter of the Hebrew alphabet.)

Algebra Ordinary algebra is the
study of operations and relations
among numbers through the use of
variables, or literal symbols, such as
“a,” “b,” ux,” uy’” th., instcad of
just constants, such as “2,” “3,” etc.
The use of variables gives algebra
vastly greater scope than arithmetic,
which is limited principally to con-
stants. For example, in algebra, the
distributive law of numbers is ex-
pressed by the formula “a - (x + y) =
ax + ay.” In arithmetic, only specific
instances could be cited, such as
36+8)=3-5+3-82(1+6)=
2+-1 4+ 2+ 6; or the law might be
stated as a verbal rule: “The product
of a given number into a sum of two
numbers is the product of the given
number into the first plus its product
into the second.” Not only are sym-
bolic formulas more compact than
verbal rules, but also they permit

4 Mmanipulations for solving equations

and deriving new relationships which
would be extremely difficult or im-
possible without them.

The role of the Arabs in spreading
algebra throughout Western Europe
(beginning about 800 A.p.) is impor-
tant in the history of the subject.
However, present-day symbolism
was not perfected in Europe until the
sixteenth and seventeenth centuries.
Algebra was eventually founded on a
logical basis in the nineteenth cen-
tury; here, the rules and formulas of
ordinary algebra can be derived from
a few initial axioms, much as the
theorems of plane geometry are de-
duced from axioms and postulates.
Many of the features of algebra fol-
low from the axioms of the field.

As an elementary subject, algebra
treats techniques for handling alge-
braic expressions, the solution of
equations, and related topics. Inter-
preted more broadly, it is one of the
major divisions of mathematics; it is
the part which deals with “finite”
processes, rather than ‘infinite”
processes, such as are typical of the
calculus. The description “higher al-
gebra” is often applied to the ad-
vanced aspects of the subject, as
distinguished from the more familiar,
ordinary algebra. Examples of topics
in higher algebra are algebraic num-
bers, groups, fields, rings, number
fields,-and the algebra of matrices. In
a very general sense, an “algebra” is
a mathematical system which ex-
presses itself in variables and sym-
bols for its entities, operations, and
relations, and develops formal rules
for the manipulation of its expres-
sions.

Ref. [32, 34, 35, 45, 61].

Algebra, Boolean See Boolean al-
gebra.



Algebra of Matrices The symbolic
study of matrices, and operations
and relations among them; it is a
generalization of ordinary algebra.
In this algebra a matrix, such as a
second order matrix

" a b )
( ¢ d

is represented by a single letter, 4,
B, C, etc.; addition and multiplica-
tion are denoted by 4 + B and 4 -
B (or AB) as in ordinary algebra,
and expressions such as 4°(X? — BX
4+ AD) have meaning in terms of
matrix operations. This algebra
shares many of the fundamental
properties of ordinary algebra; some
of these are the associative laws for
addition and multiplication (4 + B)
+C=4 +(B+ ClandA4-(B- O
= (A * B) *+ C, and the distributive
law, 4 - (B + () = 4B + 4A-C.
One of the striking differences is the
failure of the commutative law for
multiplication, thaiis, 4 - B B4
for matrices 4 and B in general (the
commutative law of addition does
hold). Such a restriction has a drastic
effect on algebraic technique; for ex-
ample, while xax can be replaced by
ax * x, or ax? in ordinary algebra,
the expression XAX cannot be so
modified for matrices. Another strik-
ing difference is the failure of the
principle of ordinary algebra which
asserts that a product can equal 0
only if at least one factor is 0; the
product of two nonzero matrices
can equal the zero matrix (the ma-
trix whose entries are al! zeros).
Matrices make up a type of “num-
ber” system known as a ring.

The theory of matrices was devel-
oped in the middle of the nineteenth
century by Cayley, and is a central
feature of higher algebra. One of its

Algebra of Propositions

principal uses is in geometry, where
a matrix can denote a transformation
of a space. Matrices are important
in the study of veciors, and in many
parts of pure and applied mathema-
tics.

Ref. [S1, 55].

Algebra of Propositiens (Syn.: Propo-
sitional calculus; Sentential calculus)
The part of the logic which treats
propositional forms buili out of the
sentence connectives “and,” “‘or,”
“if ..., then...,” and “not”; par-
ticularly, the logical vaiidity of such
forms. For example, the proposition
“The carth is round or the earth is
not round” is recognized as being
true (logically valid), not because of
any property of the earth but because
of the form of the sentence; this form
is symbolized “P or (not P),” and
any proposition with this sentence
structure is true. The connectives de-
fine the conjunction, “P and Q,” the
disjunction, “P or Q,” the conditional,
“If P, then Q,” and the denia! *“not
P Out of these, more complicated
forms can be put together; examples
are “(Pand Q)or(not @),” “If (Por
R), then Q.” The law of excluded
middle asserts the (logical) validity
of “P or (not P)” (illustrated in the
example above); the law of contra-
diction asserts the validity of “not
[P and (not P)]” (that is, that a prop-
osition and its denial are not both
true). Propositions are logically equiv-
alent in case they say the same thing
in different propositional forms. An
example is given by the law of
double negation, which asserts that
“not (not P)” is (logically) equiva-
lent to “P.” The law of contraposi-
tion asserts that the form “If P, then
Q" and the form “If (not Q), then
(not P)” are equivalent. For examn-



Algebra of Sets

ple, the sentence “If the lot is small,
then the house is small” is equivalent
to “If the house is not small, then the
lotis not small.”

In the algebra of propositions,
symbols are introduced for sentence
connectives: “P A Q" is often used
for“Pand Q,”“P v Q" for“Por(Q,”
“P — Q7 for “if P, then Q,” and
“~ P?” for “not P.” In this notation,
the sentence “It is not the case that
all is lost and the gold is not safe”
takes the form “~(P A (~ Q)).”
With variables “P,” “Q,” etc., stand-
ing for propositions, and symbols
“ALT TV, ete., for connectives, the
study of propositional forms assumes
a highly algebraic aspect; the algebra
of propositions, which evolved in the
second half of the nineteenth cen-
tury, is a type of mathematical sys-
tem called a Boolean algebra.

Ref. {18, 39, 53, 59, 68].

Algebra of Sets (Syn.: Algebra of
classes; Calculus of classes) A part
of logic (or mathematics) that treats
classes, or sets, of things, and opera-
tions and relations among these sets;
here, symbols (variables) such as
“A,” “B,” etc., are used to stand for
sets, and expressions are formed out
of these and certain signs for opera-
tions and relations (much as expres-
sions are formed with variables
denoting numbers in ordinary alge-
bra). The universe, or universal set,
is understood as the set of all indi-
vidual things, and the null, or empty
set, as the set with no individuals;
these are sometimes denoted by 1
and 0, respectively. For example, in
a particular use, all iutegers might be
taken as the universe, and a set would
mean any collection of integers; the
null set might arise as the set of in-
tegers whose squares are negative. In
plane geometry, all the pointsin the

6 plane might be regarded as the uni-

verse, and a set would be any collec-
tion of points; the null set can arise
as the set of points of intersection of
a circle and a line that does not meet
it. Various relations among sets arise.
That 4 and B are equal, written “4
= B,” means that 4 and B are the
same sets (have exactly the same
members); for example, the set of
equilateral triangles equals the set of
equiangular triangles. Thatset A4 is
included in set B, or A4 is a subset of
B, written “4 C B,” means that
every member of 4 is a member of
B; for example, the set of powers of
3 is a subset of the set of odd num-
bers. That two sets overlap means
that they have at least one member
in common; that they are disjoint

Universe

cl¢

means that they have no members
in common. These relations can be
represented geometrically, as in the
figure; here the universe is repre-
sented by the interior of the rectangle
and the sets 4, B, C by the interiors
of the circles. In the figure, B is in-
cluded in 4, 4 and C overlap, and
B and C are disjoint; such geometric
representations are called Venn dia-
grams. Various general statements
hold for these relations; among these
are the following. The null set is a
subset of every set, while every set is
a subset of the universe. The relation
of inclusion between sets is a transi-
tive relation; thatisif 4 C B and B
C C,then 4 C C. Equality and in-
clusion are connected by the fact
that 4 = B justin case 4 C B and
B C A.

Operations on sets include union
and intersection (see Property). The

A




union, or sum, of A and B is the small-
est set containing both; it is denoted
by “4 U B.” Its members are the
members of 4 taken together with
the members of B; for example, the
union of {1, 3,5} and {2, 3, 5,7} is
{1, 2, 3,5, 7,}. The intersection, or
product, of A and B is the largest set
common to both; it is denoted by “4
N B”. Its members are those com-
mon to both sets (the intersection of
the given sets in the last example is
{3, 5}). Finally, the complement of A4,
denoted by A’, is the set consisting of
all elements of the universe which
are not in A; for example, the com-

intersection

%omplemem

plement of the set of even whole
numbers in the universe of all whole
numbers is the set of odd whole num-
bers. Many general statements hold
involving operations on sets. The
union of any set 4 with the null set is
A; the union of 4 with the universeis
the universe. The intersection of 4
with the null set is the null set, and
with the universe is A itself. The
complement of the universe (null set)
is the null set (universe). Union and
intersection are commutative and as-
sociative; in this respect they are
analogous to addition and multiplica-
tion in ordinary algebra. However,
other properties are strikingly dif-
ferent; for example, the equations
AUA=Aand A N A = A hold
for all sets A; their analogs in arith-
metic, x 4 x = x,and x+x = x, do
not hold for all numbers x. De Mor-
gan’s laws are the following equali-
ties, mixing the three operations (A4

Algebraic Addition
N By = A’ U B’ (the complement of
an intersection is the union of the
complements), and (4 U B)Y = A4’
N B’. Operations on sets can be con-
nected with relations between sets.
Two sets are disjoint in case their in-
tersection is the null set. If one set is
a subset of the other, then the com-
plement of the second is a subset of
the complement of the first; that is, if
A C B,then B C 4"

The algebra of sets was originated
by Boole in the middle of the nine-
teenth century; it is a type of mathe-
matical system known as a Boolean
algebra.

Ref.[18, 39, 53, 68].

Algebra of Vectors The symbolic
study of certain operations and rela-
tions among vectors. See Vector,
Vector space.

Algebraic Referring to concepts or
methods of algebra. Sometimes used
in connection with signed numbers,
in contrast to unsigned numbers, as
in *“algebraic addition,” ““algebraic
angle,” or “algebraic multiplication.”

Algebraic Addition In arithmetic,
the addition of signed numbers, that
is, of positive and negative numbers.
Such addition can be reduced to the
addition (or subtraction) of positive
numbers by the following law of
signs:

M (—a) + (-b) = —(a + b);

@)a+(=b=a~b;

@ a+{-b=—-0b-a.
Rule (1) implies that the sum of two
negative numbers is the sum of the
numerical values with the minus sign
prefixed; for example,

(v-3) + (-8 = -3 + 8),0or ~11.

Rules (2) and (3) imply that the sum
of a positive and a negative number
is obtained by subtracting the smaller



Algebraic Equation

numerical value from the larger nu-
merical value, and prefixing the sign
of the number with the larger nu-
merical value; e.g.,,5 + (—2) =5 —
2,or3,and2 + (=5 = —-(5 - 2),
or —3. A law of signs is also availa-
ble for subtracticn.

Algebraic Equation An equation
with each side being an algebraic ex-
pression. For example, 3 — /X =
5x* + y;is an algebraic equation; the
equation 3 — sin x = 5x? 4 y,i5 not
algebraic because the term sin x is
not (it is a transcendental equation}.

Algebraic Expression Any expres-
sion in variables and constants which
designates numbers and involves
only the application of algebraic op-
erations; these are the expressions
encountered in ordinary algebra.
Special types of algebraic expres-
sions are given particular names. A

monomial involves only multiplica-

tion between variables and constants,
such as 3xy and — 5ax?; monomials,
which differ only in their numerical
factors, such as 3ax and 7ax, are
similar rerms, or like terms (a mono-
mial is sometimes called a “term™).
A binomial is a sum of two mono-
mials (terms), as in 2x + ay?; a ti-
nomial is a sum of three monomials.
A multinomial or polynomial (or a
rational integral expression) is a sum
of any number of monomials; for
example, ax* — {xy + 3y — Syzis
a rational integral expression whose
terms are ax?, — ixy, 3y, and —5y°z.
A rational expression is a quotient of
multinomials, or an algebraic expres-
sion which can be transformed to
such a quotient. This type of expres-
sion may involve any algebraic op-
eration on the variables but root ex-
traction; for example, 2 + [x/(x 4 1)]
1s a rational expression [it can be
transformed to (3x + 2)/(x + 1))

An irrational expression is one which
is not rational; it involves root ex-
traction of an expression containing
a variable, asin \/2x + 1 — 5y.

The variables of an algebraic ex-
pression are sometimes singled out,
as in the terminology “a rational
expression in x,” or “an algebraic ex-
pression in x and y.” For example,
x\/y — 2x?is a polynomial in x but
notiny; it is an algebraic expression
in either variable or both. See
Transcendental.

Algebraic Function An explicit al-
gebraic function (or, simply, alge-
braic function) is a function whose
value is given by an algebraic expres-
sion; for example, f(x) = 3x* + 21/x
specifies such a function. These alge-
braic functions may be classified ac-
cording to the algebraic expressions
which define them; for example, a
function is rational integral, rational,
or irrational according to whether the
expression is of the same type.

In advanced mathematics, an alge-
braic function is taken to mean a
correspondence from values of x to
values of y as determined by a poly-
nomial equation P(x, y) = 0; an ex-
ample is

2%y + x* — 3xy + 5x* 4+ 7 =0.
This is sometimes called an implicit
Jfunction, to distinguish it from the
first type. The theory of algebraic
functions is an extensive one in ad-
vanced mathematics.

Algebraic Identity An identity
which is an algebraic equation.

Algebraic Multiplication In arith-
metic, the multiplication of signed
numbers, that is, of positive and neg-
ative numbers. Such multiplication
can be reduced to multiplication of
positive numbers by use of the fol-
lowing law of signs:
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() (—a)-(~b) =a-b;
@ (-a)-b= —(a-b).

These provide the rule that like signs
give “plus,” and unlike signs give
“minus”; e.g.,5:(=3) = —(5-:3),
or —15’ and ('_4) * (_g) =4- (?)’
or 1Z. A similar law of signs is also
available for division.

Algebraic Number A real number
(or complex number) which is a so-
lution of some polynomial equation
whose coefficients are rational num-
bers; it is an algebraic integer if the
coefficients are ordinary integers and
the leading coefficient is one. The
theory of algebraic numbers is an im-
portant part of higher algebra. See
Integer, Number field. Ref.[16, 21].

Algebraic Operations In ordinary
algebra, the operations of addition,
subtraction, multiplication, division,
root extraction, and raising to an in-
tegral or fractional power. The non-
algebraic, or franscendental, opera-
tion is illustrated by the logarithm;
the definition of the logarithm rests
upon the limit process of the calcu-
lus.

Algorithm  Usually, an explicit
method of computation which pro-
ceeds in a step-by-step manner, re-
peating an underlying process. One
example is the method of square root
calculation taught in school; another
is the familiar procedure of long di-
vision. Sometimes “algorithm” is
used for any rule of calculation or
explicit method of solution. See
Euclidean algorithm.

Alternate Angles of Transversal See
Transversal.

Alternating Series An infinite series
whose successive terms are alter-
nately positive and negative. If the
terms are decreasing in numerical

Amplitude of Periodic Function

value and have the limit 0, then the
series is necessarily convergent; an
exampleis 1 —~ 4 + 4 — 4 4+ ...,
with #n** term (— D)™ '/n.

Alternation In /ogic, the same as
disjunction; in proportions, the deduc-
tionofa/c = b/dfroma/b = ¢/d.

Altitude In geometry, generally, a
line segment (or its length) which
measures the height of a figure. See
particular figures such as Cone, Tri-
angle, etc.

Ambiguous Case In plane trigo-
nometry, the case of the solution of
the triangle in the plane where the
given data lead to two solutions. It
occurs when two sides and the angle
opposite one of them are given, as
sides g, b, and angle 4, in the figure;

C

A B\—’7B'

each of the triangles 4BC, AB'C
satisfies the given conditions. In
spherical trigonometry, the ambigious
case in the solution of the oblique
spherical triangle occurs when two
sides and an angle opposite one of
them are given, or when two angles
and the side opposite one of them are
given (this latter case is peculiar to
the spherical triangle).

Amplitude of Complex Number
(Syn.: Argument; Phase) The angle
of rotation about the origin of the
positive x-axis into the point with
rectangular coordinates (a, b), repre-
senting the complex number a + bi.

Amplitude of Periodic Function See
Periodic function.



