Parallel processing systems

Edited by
DAYID JLEVANS

/3*&/)3 ,

(2.

™
)

Parallel pfocessin o systems

Edited by
DAVID J.LEVANS
Professor of Computing, University of Technology, Loughborough

CAMBRIDGE UNIVERSITY PRESS
Cambridge Priovou
London New York New Rochelle
Melbourne Sydney

8550024

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

32 East 57th Street, New York, NY 10022, USA

296 Beaconsfield Parade, Middle Park, Meclbourne 3206, Australia

© Cambridge University Press 1982
First published 1982

Printed in Great Britain at the University Press, Cambridge

Library of Congress catalogue card number: 81-38445

British Library cataloguing in publication data
Parallel processing systems

1. Parallel processing (Electronic computers)

" 2, Electronic digital computers

1, Evéns, David J,

001.64 QA76.6

ISBN 0 521 24366 1 // ,
e
7f“ o ‘f ’
s - ~ Ve
‘o Lo
e ‘n\“‘)
t/;:' f’ : W\Q”’ ’
e ST

PREFACE

This publication is based on an Advanced Course on Parallel Processing Systems
given at the University of Technology, Loughborough, from 15 September to

26 Septemnber, 1980. The course was sponsored by the Science Research Council
under the auspices of the Informatics Training Group of the EEC Scientific and
Technical Research Committee (CREST). The course lecturers provided a care-
fully arranged integrated programme of lectures, which were supplemented by
specially invited contributions. '

CONTRIBUTORS

Course director .
D. J. Evans, Department of Computer Studies, University of Technology,
Loughborough, Leicestershire LE11 3TU, UK

Professor J.-L. Baer, Department of Computer Science, University of
Washington, Seattle, Washington 98195, USA :
Dr R. H. Barlow, Department of Computer Studies, University of
Technology, Loughborough, Leicestershire LE11 3TU, UK

Professor P, H, Enslow Jr and Timothy G. Saponas, School of
Information and Computer Science, Georgia Institute of Technology,
Atlanta, Georgia 30332, USA

Professor D. J. Evans, Department of Computer Studies, University of
Technology, Loughborough, Leicestershire LE11 3TU, UK

Professor Dr M. Feilmeier, Institut fiir Rechentechnik, Technische
Universitit Braunschweig, Pockelsstrasse 14, 3300 Braunschweig,
West Germany

Professor C. Girault, Université Pierre et Marie Curie, U.E.R. 50,
Institut de Programmation, Tour 55-65, 4 Place Jussieu, 75230 Paris
Cedex 05, France

Professor Dr W. Handler, Institut fiir Mathematische Maschinen und
Datenverarbeitung (Informatik), Friedrich-Alexander-Universitit
Erlangen-Niirnberg, Martensstrasse 3, 8520 Erlangen,

West Germany

Dr M. Hatzopoules, Unit of Applied Mathematics II, University of
Athens, Panepistemiopolis, Athens 621, Greece

Professor D. J. Kuck, Department of Computer Science, 222 Digital
Computer Laboratory, University of Illinois at Urbana-Champaign,
Urbana, Illinois 61801, USA

Professor H. T. Kung, Department of Computer Science, Carnegie-
Mellon University, Pittsburg, Pennsylvania 15213, USA

Dr I. A. Newman, Department of Computer Studies, University of
Technology, Loughborough, Leicestershire LE11 3TU, UK

Contributors

Professor D. Parkinson, DAP Support Unit, Computer Centre, Queen
Mary College, University of London, Mile End Road, London E1 4NS.
UK

Dr G. Roucairol, Université Pierre et Marie Curie, U.E.R. 50, Institut de
Programmation, Tour 55-65, 4 Place Jussieu, 75230 Paris Cedex 05,
France

Mr A.J. Slade, Department of Computing, Science Laboratories,
University of Durham, South Road, Durham DH1 3LE, UK

Professor J.-C. Syre, ONERA-CERT, Complexe Aérospatial de Lespinet,
2 Avenue Edouard Belin, BP No. 4025, 31055 Toulouse, France

Dr P. Treleaven, Computing Laboratory, University of Newcastle upon
Tyne, Claremont Tower, Claremont Road, Newcastle upon Tyne

NE1 7RU, UK

" Dr 8. A. Williams, Department of Computer Science, The University of
Reading, Whiteknights Park, Reading, Berkshire RG6 2AX, UK

Dr M. C. Woodward, Department of Computer Studies, University of
Technology, Loughborough, Leicestershire LE11 3TU, UK

INTRODUCTION

D.J.EVANS

In the last few years dramatic improvements in circuit device and computer
architecture technologies together with new concepts in system organisation
have brought forth many new innovative computer systems which are capable of
supporting a large number of concurrent operations and activities. These parallel
computing systems will undoubtedly create new research and development areas
when they are built and programmed to attain their maximum cost-effectiveness
and benefit society by revealing hitherto unknown solution strategies and
applications. The advances realised to date represent little progress when we
compare what is known about paralle] computation with the corresponding
body of knowledge for serial computation. Indeed, many challenging problems
in the fields of programming languages and compilers must be solved before the
advantages of the proposed parallel architectures can be fully exploited.

This book is divided into six parts covering the following topics: parallel and
distributed computer systems, analysis of parallel programming systems, multiple
instruction multiple data (MIMD) computer systems, single instruction multiple
data (SIMD) computer systems, data flow processors and parallel computer
algorithms. Each chapter of the book was originally prepared as documentation
for lectures presented at the Advanced Course on Parallel Processing Systems at
the University of Technology, Loughborough, England in September 1980.

The aims and purpose of the advanced course were to accelerate the interchange
of information in this increasingly important area and to examine in depth and
provide discussion of problems amongst the scientists and computer professionals
who may use parallel processor systems and those who design or program such
systems. The original course material has been extensively revised for publication
in its present form. The book aims to provide a coherent account of all major
aspects of parallel processing and also to give an up-to-date account of recent
activity in this area.

11

12

13

14

15
16
17
18

CONTENTS

Preface
List of contributors
Introduction: D. J. Evans

Part 1 Parallel and distributed computer systems
Innovative computer architecture - how to increase parallelism
but not complexity: Wolfgang Handler

Parallel control in distributed systems: Philip H. Enslow Jr and
Timothy G. Saponas -

Part 2 Analysis of parallel programming systems
Techniques to exploit parallelism: Jean-Loup Baer

Transformations of sequential programs into parallel programs:
G. Roucairol :

Representation of parallelism in computer programs: Shirley A.
Williams
Proof of protocols in the case of failures: C. Girault

Part 3 The Loughborough MIMD parallel processor sy'stem
The organisation and use of parallel processmg systems:
I A. Newman

Implementing parallel processing on a production minicomputer
system: A. J. Slede

Coordination: M. C. Woodward
Performance measures for parallel algorithms: R. H. Barlow

Part 4 SIMD architectures and languages.
High-speed machines and thex} compilers: David J. Kuck

Practical parallel processors and their uses: Dennis Parkinson

Part 5 Data flow processors: design and organisation

The data flow approach for MIMD multiprocessor systems:
J.-C. Syre

Parallel modgels of computation: Philip C. Treleaven

Part 6 Parallel computer algorithms
Parallel numerical algorithms: M. Feilmeier

Notes on VLSI computation: H. T. Kung
Parallel numerical algorithms for linear systems: D. J, Evans

Parallel linear system solvers for tridiagonal systems:
M. Hatzopoulos

Index

43

75
101

115

- 239

275

285
339
357
385

395

1 Innovative computer architecture ~ how to increase
parallelism but not complexity

WOLFGANG HANDLER

1 Introductory remarks
‘Parallelism’ is used as a general term to characterize all the different
kinds of simultaneity occurring in modern computers. In this general sense it
includes pipelining. In the following text we have nevertheless to differentiate
parallelism (in 2 more special sense) as opposed to pipelining. In cases where we
refer to the general and overall meaning we will call it ‘parallelism in general’ or
‘parallelism i.g.”.
Parallelism in general offers great opportunities regarding:

(2). improved overall performance

(b) improved availability and safety.

The second point cannot be covered sufficiently in this article. It is neverthe-
less a key point in the evolution towards parallelism. With respect to the first
point, we consider all those prerequisites that make it possible to improve
performance. Evidently parallelism per se does not guarantee such an improve-
ment, as some contemporary concepts show. So a case study of useful parallelism
is given in section 3 and the ideas behind it in section 4. Section 2 gives a general
overview and orientation with respect to all possible contemporary and future
forms of parallelism.

The classical computer, as defined by Burks, Goldstlne and von Neumann [1],
consists of (see figure 1.1):

program-control or control unit (CU)

arithmetic unit or arithmetic and logic unit (ALU)
memory or storage unit

input/output unit (1/0).

Later versions of this classical concept made it possible for at least two of
these units to work at the same time, which was not the case during the pioneer
period. Machine words or numbers, normally stored in a hardware unit called
a memory cell, are also referred to as paraliel words in cases where such words
are processed by taking all positions (or bits) at the same time. In this sense we
find some forms of parallelism i.g. in early computers.

8550024

Wolfgang Handler 4 2

In this presentation we will centre more on all possible forms of parallelism
i.g. that distinctly go beyond the word parallelism as used in the context of the
‘parallel computers’ of the fifties and the sixties. ’

True parallelism (of any kind) requires the existence of more than one unit
working at the same time. Such units can be control units (CU), arithmetic and
logic units (ALU), input/output units and memory units, while simultaneous
operation of the latter certainly can result in a speedup of the overall operation,
they nevertheless do not influence the structure of processing, as the other units
can.

In a classical structure the control unit (CU) together with an arithmetic and
logic unit (ALU) form a central processor unit or, simply, a processing unit (PU).
Replicating either PUs themselves or the number of ALUs connected to each PU
results in proper parallelisin i.g. Making available many PUs means that many
programs er many parts of one program can be processed at the same time, i.e.
in parallel (figure 1:2). Connecting many ALUs with one CU means that many
data words can be processed in ‘parallel by one program, which this CU is inter-
preting (figure 1.3). The PU with many ALUs, therefore, is more powerful than
one of the forementioned PUs with only one ALU each.

In contrast to this parallelism, pipelining also requires - as defined above -

a multitude of resources like PUs or ALUs. While one set of data is processed by
one of the resources, another set of data can be processed by another resource
next to it, etc. In this sense the data words are flowing from one resource (PU or
ALU) to the next one in a chain process. During the whole process » tasks are
performed, e.g. one after the other on one set of data. 1n such sets may be in

Figure 1.1, The classical computer.

Control
unit
o]
Arithmetic-
logic unit
ALU

Alternatively

M
Memory unit

Innovative computer architecture

a ‘pipeline’ at the same time, where each one is at a different stage of the
process.
Paralielism and pipelining can both be seen in three different logical levels:

Parallelism Pipelining
Program level Multiprocessor Macro-pipelining
Instruction level Muitiple ALUs Instruction pipelining
(array processor)
Word level Multiple bits Arithmetic pipelining

(wordlength, if
greater than 1)

With respect to pipelining these processing forms can be represented in block
diagrams as shown in figures 1.4-1.6. Instead of differentiating three different

Figure 1.2. A multiprocessor, consisting of a common memory and
several processing units,

Figure 1.3. Parallel data processing of one program by several ALUs,
controlled by one CU.

YUY
R

Wolfgang Hindler : 4

levels contemporary papers very often talk only about ‘pipelining’, which in
many cases is not sufficient.

In cases where the multiplicity of hardware resources (e.g. ALUs) is 7, one
cannot gain an n-fold increase in performance by choosing an appropriate
arrangement. This point will be considered in more detail in section 3.

With these six basic forms of parallelism i.g. (illustrated in figures 1.1-1.6) it
is possible to introduce a classification scheme, which forms a starting point
allowing us to build up a wide variety of composed computer structures, and
which at the same time reflects historical as well as evolutionary aspects of these
structures [2].

Figure 1.4, Macro-pipelining.

* *

Figure 1.5. Instruction pipelinifg.

cu

ALY .

Innovative computer architecture

2 Classification and taxonomy of computer structures

A classification scheme has mainly to fulfil the following requirements:

(@) It must be possible to classify all existing as well as all foresecable
computer structures.

(b) It must differentiate essential processing structures.

(c¢) Any subject or computer structure must be assigned a unique
classification. ’

Some existing classification schemes seem to violate just these rules [3]. They
present only very rough categories, exclude viable structures and are not able to
uniquely classify any kind of pipelining.
The Erlangen Classification System (ECS) largely avoids these disadvantages.
It is mainly based on two points:
(a) It introduces a very simple, lucid but rigid triplet as a characterization
for basic structures.
(b) It introduces operations +, * and v in order to make compositions of
structures available and in order to represent a certain ‘flexibility’.

In this context ‘flexibility’ (or ‘versatility’) is defined as the number of
different operation modes in which existing hardware can be utilized.

Disregarding for the present the three types of pipelining we may define the
Erlangen triplet [4]:

t=(k,d,w)

Figure 1;6. Arithmetic pipelining.

cu

ALU

Wolfgang Héindler 6

_where
k is the number of control units (CUs) interpreting a program
d is the number of arithmetic and logic units (ALUs) controlled by one of

the & control units
w is the wordlength or number of bits handled in one of the d ALUs.

This characteristic can be seen as a point in a three-dimensional space (figure
1.7). It immediately follows that the characterized computer structure has
¥ CUs of the same type and each one of the d ALUs (connected to each of the
CUs) has to be of the same type. This homogeneity can also be seen with respect
to the bits of a word in one of the d ALUs.

Simple computers of the Princeton type can be characterized by a triplet
r=(1,1,w) (see figure 1.7). Early Princeton computers had, €.g. 36-, 48- or
32.bit wordlength, so that we have (1,1,36), (1,1,48) or (1,1,32) as triplets.
The simplest possibility, which always seems to be possible, is the triplet (1,1,1).
indeed this simplest form was realized in Europe during the fifties by van der
Poél [5] and by T. Fromme [6], who called his computer the ‘Minima’. More
popular similar computers were called ‘serial computers’ at this time because the
bits were processed one after another. The idea behind this very simple structure
was 10 save hardware and money. Fast evolving hardware has since caused
computer designers to change their point of view. A contributory fact was that

Figure 1.7. Three-dimensional representation of the elementary parallel-
characteristic triplet of a computer of the Princeton type.

k Number of CUs

= {1,1,32)

tPrinceton

W

Wordlength of one

d Number of ALUs ' of the d AlLUs
controlled by one
of the k CUs

Innovative computer architecture . 7

most control elements do not permit a serialization (sequentialization) without
bringing about an additional complexity.

It has to be mentioned that the characterization by such very simple triplets
is only valid if there is no autonomous I/O control, which in some cases can'be
programmed separately. ‘

Having introduced these simple triplets or structures we can introduce
combinations of structures such as really make up the contemporary computer
generation. However, before we give some examples of such composites we have
to direct our attention to all kinds of pipelining because these can be ingredients
of a basic triplet or structure. '

An elementary parallel-pipelining characteristic is an extended triplet

t=(k*k' d*d',wxw"),
where k, d, w are as defined above, and
k' is the number of control units (CUs) interpreting tasks of a program,
whereby the data flow through these units (processor) is sequential:
macro-pipeline
d' is the number of function units (ALUs) controlted by one CU and
working on one data stream: instruction pipeline

L

w' is the number of levels or phases in an arithmetic pipeline.
Naturally the ‘extended triplet’ could be written in the form of a sextet. But
such a form would be less readable, and the fact that the entities are well
defined by the separating commas was decisive in the triplet style being adopted.

Simple examples of computers, which essentially correspond to the ven
Neumann type (Princeton type) but equipped with certain forms of pipelining,
are as follows
CDC 7600 . tcpe 1600cp = (1#1,1%9,60+*1) = (1,%9,60)
in a simplified notation with the factor 1 dropped (see figure 1.8). Similarly
figure 1.9 corresponds to _

CDC STAR cpe sTarRce = (1,2,64%4)
(where in the same manner the ones have been canceiled), and figure 1.10 is
TIASC t1 asc.cp = (1,4,64+8).

The first example, CDC 7600 [7), is a representation of the central processor
only. Otherwise we would have to add the notations for peripheral processor,
front-end processor, etc., for which the appropriate operators are introduced
later. .

The notation *9 in fcpc 7600.cp Means ‘nine function units’ which play the
role of the ALU in this concept.

Wolfgang Hindler 8

The notation 64 *4 in tcpe sTaRr-cp [8] means ‘an arithmetic pipeline with
four levels’ working on 64 -bit information. In the second position of the triplet
the 2 signifies that two such pipelines are allocated.

The notation 64 *8 in t1; asc-cp [9] accordingly means that arithmetic
pipelines with eight levels are acting as ALUs. In the second position the
4 represents that four such arithmetic pipelines exist.

_Figure 1.8. CDC 7600. Five 12-bit words from the peripheral processors
are transferred into one 60-bit word of the central processor. The
reverse transfer is done in a similar way.

15
peripheral
pProcessors Central processor

ALY
12 bits
M wide C
'w ’ Instruction
. pipeline of
9 levels
M
*
L]
- ALU 60 bits wide

ALY

Innovative computer architecture

It should be mentioned that in the last two examples the number of pipe-
lines is optional. The numbers in these examples give the numbers for the full
extension of each model.

With the given triplets all elementary structures can be characterized.
Because the three parts of a triplet refer to a specific homogeneous structure,
one has now to introduce composition rules to make possible the characteriza-
tion of more complex structures.

With the basic triplets given above it is already possiﬁle to characterize either
a multitude of (essentially) equal control units (CUs), each able to interpret
a program, or a multitude of arithmetic and control units (ALUs), each able to
process one data stream. If there are diverse elements instead of one triplet
a composition of them has to be applied. For this reason we introduce the
operators:

+ (plus) for the existence of more than one structure, in particular for
diverse structures (because otherwise they might be united into one
elementary triplet, as pointed out earlier), as an alternative for the
data, whereby they may (normally) be processed, each item according
to its specific nature on the best studied structure.

Figure 1.9. CDS STAR. Two ALUs each 64 bits wide. Arithmetic
pipelines of 4 levels,

cv

ALU ALY

