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PREFACE

This textbook was developed to provide graduate students in physics and
astronomy at the University of Maryland with a comprehensive background
in plasma physics. It was designed for a two-semester course, normally taken
in the second year of graduate study by students who have completed the usual
sequence of graduate courses in classical and statistical mechanics, electro-
magnetism, and mathematical methods. It is a basic introduction to the field
and assumes no background in plasma physics. Although it was intended as a
graduate text, it could be used for an advanced undergraduate course by proper
selection of material.

The basic plan of the book is to begin with the exact statistical description
of a many-body system and then to obtain- various reduced descriptions of the
plasma state. The most reduced description, called fluid theory, or macroscopic
theory, is developed first and is used to explore a wide range of plasma phenome-
na and problems involving equilibrium, waves, and instabilities. Macroscopic
theory, together with transport phenomena in plasmas (Chapter 6), are typically
covered in the first semester of the course.

Next, the book takes up a less reduced description, the Vlasov or micro-
scopic theory, based on a continuous distribution function of velocity and
configuration space, and again considers problems of plasma equilibrium, waves,
and instabilities, in addition to nonlinear interactions of waves and the plasma °
distribution. This ** Vlasov-Maxwell”* description of the plasma state predicts
phenomena that depend on the details of the velocity-space distribution function,
including, for example, Landau damping, velocjty-space instabilities, velocity-
space diffusion, etc. The Vlasov results for these plasma properties are compared
with the results of the somewhat simpler fluid treatment of the earlier chapters.

Correlations, fluctuations, and radiation, being phenomena that depend
on discreteness, are not included in either of the above reduced descriptions.
A test-particle approach is used to calculate these quantities. Further discrete
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properties of plasmas are obtained from higher-order reduced descriptions of
the exact statistical equations, leading to the Fokker-Planck or Balescu-Lenard
equations and calculations of transport coefficients for plasmas.

The theory of the orbits of single-charged particles in static and time-
varying electric and magnetic fields is included as an appendix, consistent with
our objectives of trying to be complete, and at the same time not devote extensive
text space to treatment of topics that are simple and adequately treated in many
readily available reference sources.

One unique feature of this book is an extensive introductory chapter
intended to eliminate the ““jargon gap™ that we found to be a major stumbling
block for students first encountering plasma physics. Most of our students have
an adequate background in mathematics and classical physics, but many of the
concepts and the terminology associated with plasma phys1cs are unfamiliar to
them, creating an artificial difficulty.

This introductory chapter is really a short course (three to four lectures)
in the concepts and terminology of plasma physics. As such it is useful to anyone
who desires a qualitative introduction to the field. Another unique feature is a
chapter on the equilibrium statistical mechanics of plasmas. The purpose of this
chapter is to provide the student with the proper perspective of plasma physics
as a many-body problem and the plasma state as a statistical system. This
chapter calculates the thermodynamic properties of the equilibrium plasma, and
sets the stage for the rest of the book, which deals with the many realistic
situations in which the plasma is not in a state of thermodynamic equilibrium.

With regard to references, we selected primarily books and review papers
that we found of particular value to students. It is our opinion that a proper
grasp of the physics is the overriding concern, to which the historical aspects of
the field are subordinate.

Recent advances in the use of digital computers to simulate a plasma have
provided considerable insight into plasma processes. Some simulation results
are included where they amplify or extend a particular analytical result, or
contribute to a better understanding of plasma properties.

‘There are many problems in each chapter, varying in difficulty from routine
algebraic manipulations leading to well-known results to challenging problems
that will help the student interested in research in plasma physics obtain a better
feeling for this diverse and intriguing field.

Gaussian-cgs units are used throughout this book, since their use is wide-
spread in the plasma physics research literature. A conversion table from
Gaussian-cgs units to standard practical units for quantities such as resistivity,
capacitance, electric field strength, etc., is included in Appendix III, along with
a list of the most frequently occurring symbols (such as plasma frequency,
cyclotron frequency, etc.).

. A project as extensive as this text naturally involves the contribution of a
large number of people.
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1

INTRODUCTION TO PLASMA PHYSICS

Plasma physics is the study of charged particles collected in sufficient number so
that the long-range Coulomb force is a factor in determining their statistical
properties, yet low enough in density so that the force due to a near-neighbor
particle is much less than the long-range Coulomb force exerted by the many
distant particles. It is the study of low-density ionized gases. The term ““plasma”
was first used to describe a collection of charged particles by Tonks and Lang-
muir,! in 1929, in their studies of oscillations in electric discharges. However,
the most characteristic aspect of the plasma state, the fact that because of the
long range of the Coulomb force the charged particles exhibit a collective
behavior, was known much earlier, and was probably first described by Lord
Rayleigh,? in 1906, in his analysis of electron oscillations in the Thomson model
of the atom.
The term “‘fourth state of matter,” often used to describe the plasma state,
was coined by W. Crookes® in 1879 to describe the ionized medium created in a
gas discharge. The term fourth state of matter follows from the idea that as heat
is added to a solid, it undergoes a phase transition to a new state, usually liquid.
! L. Tonks and I. Langmuir, Oscillations in Ionized Gases, Phys. Rev., 33:195 (1929).

2 Lord Rayleigh, Phil. Mag., 11:117 (1906).
3 W. Crookes, Phil. Trans., 1:135 (1879).
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2 PRINCIPLES OF PLASMA PHYSICS

If heat is added to a liquid, it undergoes a phase transition to the gaseous state.
The addition of still more energy to the gas results in the ionization of some of
the atoms. At a temperature above 100,000°K most matter exists in an ionized
state; this ionized state of matter is called the fourth state. A plasma state can
exist at temperatures lower than 100,000°K provided there is a ‘'mechanism for
ionizing the gas, and if the density is low enough so that recombination is not
rapid.

Although 99.9 percent of the apparent universe exists in a plasma state,
there is very little in the way of natural plasma here on earth because the low
temperature and high density of the earth and its near atmosphere preclude the
existence of plasma. This means that plasma must be created by experimental
means to study its properties. However, in the upper atmosphere (ionosphere),
plasma does exist, created by photoionization of the tenuous atmosphere.
Farther out from the earth, plasma is trapped in the earth’s magnetic field in the
near vacuum of space. Plasma streams toward the earth from the sun (the
solar wind), and fills many regions of interstellar space, forming the medium
through which outer space is viewed.

Plasma physics generally involves the well-known physics of classical
mechanics, electromagnetism, and nonrelativistic statistical mechanics. The
challenge of plasma physics comes from the fact that many plasma properties
result from the long-range Coulomb interaction, and therefore are collective
properties that involve many particles interacting simultaneously.

In its simplest form, a plasma is a collection of protons and electrons at
sufficiently low density so that binary (short-range) interactions are negligible.
Many-body theory, or the many-body problem, is the study of the properties of
such a medium. When a collection of protons and electrons coexist in ar
equilibrium state, the properties of this state are described by equilibrium statis-
tical mechanics with the appropriate Gibbs ensemble. However, most of the
interesting features of plasmas occur for nonequilibrium situations.

Revived interest in plasma physics in the United States began in 1952 with
the attempts of a program, then classified, known as Project Sherwood,! to
develop a controlled thermonuclear fusion reactor. Similar programs were
started in England, France, and the U.S.S.R. at about the same time. These
programs have grown substantially since that time, and now there are many
nations with major research programs in this field. Although the development
of a controlled fusion reactor is one of the more challenging practical applica-
tions of plasma physics, it is only one of the many areas in which plasma physics
plays arole. Plasma physics has played a major role in the development of much

! A. S. Bishop, “Project Sherwood,” Addison-Wesley, Reading, Mass., 1958.
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of contemporary physics, and it is important in the study of problems in such
areas as astrophysics, atomic physics, chemistry, life sciences, molecular physics,
magnetohydrodynamic power generation, and atmospheric physics.

Plasma physics has its own vocabulary and set of ideas. The main purpose
of this chapter is to review plasma physics on an elementary level, provide a
background sketch of the familiar concepts of the field, identify many of the
terms used repeatedly in discussing the plasma state, review some of the schemes
by which plasma is produced in the laboratory, and review some of the methods
by which plasma properties are measured.

PART ONE: PLASMA CONCEPTS AND TERMINOLOGY

1.1 EQUILIBRIUM AND METAEQUILIBRIUM

The term *‘equilibrium™ is often loosely used in plasma physics to describe a
quasi-steady-state condition that persists only until the plasma particles collide
with each other. Frequently, plasma studies are made by investigating small per-
turbations about such a metaequilibrium state.

Thermodynamic equilibrium means that the ions and the electrons are
each described by a maxwellian distribution characterized by the same single
parameter, the temperature. In this situation, the medium is in equilibrium with
its surroundings, and it radiates and absorbs energy at the same rate. The spec-
trum of emitted radiation is blackbody.

In many of the theoretical and experimental situations of interest in plasma
physics, the ions and electrons are neither at the same temperature nor in thermo-
dynamic equilibrium with their surroundings. The term metaequilibrium is used
to describe situations that eventually will be altered by binary collisions.

1.2- DEBYE LENGTH
The electrostatic potential of an isolated particle of charge g is
q
== 2.1
o= (21
In a plasma, electrons are attracted to the vicinity of an ion and shield its ele :ro-
static field from the rest of the plasma. Similarly, an electron at rest repels other

electrons and attracts ions. This effect alters the potential in the vicinity of a
charged particle. The potential of a charge at rest in a plasma is given by

¢ = ?7 e~riio (12.2)



4 PRINCIPLES OF PLASMA PHYSICS

where A, is the Debye length originally defined in the Debye-Hiickel theory of
electrolytes. For an electron-proton plasma

Ap= (-ﬂ-)”2 = 4.9(T) . (1.2.3)

8nne? n

where n = density of electrons (or ions), cm ™3

T = temperature, °K
x = Boltzmann’s constant (= 1.38 x 107 !® ergs/°K)

The Debye length is a measure of the sphere of influence of a given test charge in
a plasma. In general, the Debye length depends on the speed of the test charge
with respect to the plasma.

1.3 PLASMA PARAMETER

The plasma parameter g indicates the number of plasma particles in a Debye
sphere, and is defined by
For Debye shielding to occur, and for the description of a plasma to be statisti-
cally meaningful, the number of particles in a Debye sphere must be large; that
is, g € 1. The assumption g <€ 1 is called the plasma approximation. The plasma
parameter is also a measure of the ratio of the mean interparticle potential energy
to the mean plasma kinetic energy. An ideal gas corresponds to zero potential
energy between the particles. In many situations the plasma parameter is small
and the plasma is treated as an ideal gas of charged particles, that is, a gas that
can have a charge density and electric field but in which no two discrete particles
interact,
To ensure that nl,* be large, the density must be low, since
1 nt/2

9= i T
Because the collision frequency decreases with density #, and also decreases with
increasing temperature T, the condition ¢ — 0 corresponds to a decreasing colli-
sion frequency.

Problem 1.3.1 Show that, if ratio of mean kinetic energy to mean
interparticle potential energy is much greater than 1, that is, if
(KE

5>
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the number of particles per Debye sphere ni,* must also be much larger
than I. _ /1]

The plasma parameter g is one of the more important dimensionless pa-
rameters associated with a plasma, and may be interpreted as a measure of the
degree to which plasma or collective effects dominate over single-particle
behavior. The plasma state is described by equations obtained from an expan-
sion of the exact many-body equations in powers of g.

A distinctive constrast between the statistical mechanics of a plasma and
that of a neutral gas is that in a plasma the expansion parameter g is small when
many particles interact at the same time, since 4, is essentially the volume of the
interaction region; for a neutral gas, the atomic radius R is a measure of the
interaction region and nR> (< 1) is the expansion parameter. The plasma behaves
as a nearly ideal gas in spite of the presence of many interacting particles; the
reason is that the strength of the interaction between individual particles is so
weak, as shown in Prob. 1.3.1.

1.4 DISTRIBUTION FUNCTION

The most detailed description of a plasma gives the location and velocity of each
plasma particle as a function of time. It is impossible to obtain such a descrip-
tion of a real plasma, except in some recent ‘‘experiments’’ which involve the use
of digital computers to follow the position and velocity of a large number of
ions and electrons. Therefore it is customary to use the distribution function
fto describe a plasma. The distribution function is the number of particles per
unit volume in six-dimensional velocity-configuration phase space. From the
Boltzmann H theorem! it is known that under the action of binary collisions an
ideal gas relaxes to a maxwellian distribution of velocities.

m 3/2 J2T
af(v) =n e m2x 1.4.1
A0 = (570 (1.4.1
where 1 = N/V, with N the number of particles of a certain type (e.g., ions or
electrons) in the system and ¥ the volume of the system. Although laboratory
plasmas probably never achieve exactly a maxwellian distribution, they may
approach it closely, and it is useful in many theoretical treatments to assume that
the plasma is described by a maxwellian velocity distribution.

1§, Chapman and T. G. Cowling, “The Mathematical Theory of Non-uniform Gases,”
Cambridge, London, 1952.



