

Editor: Susan A. Solomon

Editorial Assistant: Pamela Lanam
Text and Cover Designer: John Edeen

Production Coordinator: Stacey Sawyer, Montara, California

Copyeditor: Nancy Palmer-Jones
Illustrator: Pat Rogondino
Typesetting: Bi-Comp, Inc.

FIRST EDITION

Copyright © 1987 by Times Mirror/Mosby College Publishing A division of The C.V. Mosby Company 11830 Westline Industrial Drive, St. Louis, MO 63146

All rights reserved. No part of this publication may be reproduced in a retrieval system, or transmitted, in any form or by any means electronic, mechanical, photocopying, recording, or otherwise, without prior written permission from the publisher.

Printed in the United States of America

Library of Congress Cataloging in Publication Data

Lientz, Bennet P.

Data communications for business.

Bibliography: p. Includes index.

Business—Data processing.
 Data transmission systems.
 Computer networks.
 Rea, Kathryn P.
 Title.

HF5548.2.L535 1987

650'.028'546 86-23012

ISBN 0-8016-3013-4

BC/VH/VH 9 8 7 6 5 4 3 2 1 02/A/264

DATA COMMUNICATIONS FOR BUSINESS

The Times Mirror/Mosby Data Processing and Information Systems Series

Cohen-Alger-Boyd Business BASIC for the IBM PC with Cases

Dravillas-Stilwell-Williams Power Pack for the IBM PC

Floyd Essentials of Data Processing

Harpool-Culp-Galehouse Systems Analysis and Design Projects

Lientz-Rea Data Communications for Business

Spence-Windsor Microcomputers in Business: WordStar, dBASE II and III, and Lotus 1-2-3

Spence-Windsor Using Microcomputers: Applications for Business

Whitten-Bentley-Ho Systems Analysis and Design Methods

PREFACE

THE INTENDED AUDIENCE FOR THIS BOOK __

Data Communications for Business is intended for a one-term, first course in data communications as applied to business. It can be used in an undergraduate or MBAlevel course at a four-year college or at a two-year college or technical school wherein business applications of the technology are emphasized. The audience for this book is not only information systems and business majors but also students and professionals who will be or are acting as users, staff, and managers involved with communications-based systems. In preparation and writing, we followed the recommendations of the IEEE, the ACM, and the DPMA curricula.

WHY WE WROTE THIS BOOK ___

Electronic communications is changing the way corporations function and are organized. A modern enterprise cannot survive without an extensive communications network to keep in touch with suppliers, customers, employees, and managers, as well as other entities. Because of organizations' dependence on communications and because of the rapid increase in the spread of communications systems, the communications field should interest all of us. It is

important to become more aware both of communications concepts and the way communications-based systems are analyzed, designed, built, tested, and installed. And we cannot stop at installation. When a system is placed into operation, the operations life cycle begins. Controls, enhancements, maintenance, and just keeping a system running become critical to the organization.

Communications is an area where there are no observers—we are all participants and players. Data communications is no longer the domain of only technicians; managers and employees in many fields now use the latest communications technology every day. It is for these newest participants that we have written this book.

WHY WE THINK YOU SHOULD CONSIDER THIS BOOK

If you teach a *business* data communications course, we believe you should consider adopting this book because:

- The coverage of technical concepts and managerial applications is more clearly balanced than in any other text. Students learn not only how the technology works but how it is applied in the business environment.
- Our management coverage is practical and real-world. The examples in our

- book are based on our personal experiences as communications consultants.
- The breadth and depth of coverage is geared for the business-oriented student. Our coverage of technology will not "overwhelm" the nontechnical student. In addition, this book includes chapters on management, planning, and implementation—knowledge that is essential for today's data communications manager.
- Our book is more up-to-date than other texts. We cover the latest communications innovations, including microcomputers, fiber optics, local area networks, satellites, cellular radio, and wide area networks.
- Our book offers a more comprehensive pedagogy than other texts.
 - Introductions begin each chapter to set the stage for the forthcoming material.
 - Definitions of key terms are provided first in brief, and then later they are expanded in the appropriate context.
 - Checklists are included throughout. Students may use these as a basis for completing any exercises or problems that are assigned.
 - Examples are numerous and realistic. We have made an effort to give the concepts and methods life by drawing on our experience in designing and implementing systems over the last twenty years. We have included examples of failure as well as success. In communications, as in other fields, one tends to learn more and learn faster from encountering and solving problems and overcoming failures than from merely reading about rules and principles.
- Summaries conclude each chapter.
- Chapter Exercises draw directly on the chapter material and test students' mastery of the concepts in the chapter.
- Chapter Problems illustrate issues that students are likely to encounter when they attempt to use the con-

- cepts they have learned in a business environment. These problems may require data collection and additional reading and research.
- References and Bibliographic Material are included for additional reading and research. This appendix may be particularly useful for completing the Chapter Problems.
- A Glossary of terms is included as an appendix and for future reference value. (Terms bold faced in the text are defined in the glossary.)
- Acronyms and Abbreviations are in the third appendix. This list includes many of the common terms used by data communications professionals

HOW TO USE THIS BOOK

What should data communications students learn? First, students must gain some familiarity with the concepts and terminology of electronic communications. They must learn how communications systems operate, the purposes and features of their various components, and the areas where managers and technicians must focus their attention. Finally, they must apply this knowledge to specific problems and issues that organizations face in using electronic communications.

To that end, this book is divided into two parts. Part I covers the technical aspects of communications technology. Specifically, it explores:

- Voice communications (Chapter 2)
- Three major components of data communications:
 - Data transmission (Chapter 3)
 - Communications hardware (Chapter 4)
- Software and protocols (Chapter 5)
- Local area networks (Chapter 6)

These chapters should be read in sequence. Although the second chapter addresses voice and telephone communications in particular, it also introduces basic concepts that will be used in later chapters.

In Part II we employ the concepts discussed in Part I as a basis for learning about implementing, installing, and operating communications-based systems. It focuses on management and technical concerns associated with the analysis, design, development, installation, and operation of a data communications system. The chapters in this part cover:

- Systems analysis for voice communications systems (Chapter 7)
- Requirements and specifications for data communications system (Chapter 8)
- Systems planning for communicationsbased systems (Chapter 9)
- Design of on-line systems (Chapter 10)
- Installation of a communications-based system (Chapter 11)
- Management control, audit, and security (Chapter 12)
- Operation of a communications system and network (Chapter 13)

Chapters 7 and 8 follow up on the technology presented in Part I. They should be read in sequence after Part I. Chapter 9 addresses more general issues associated with the planning of communications-based systems; for less advanced or shorter classes, this chapter may be deferred until the end of the course.

The remaining chapters deal with life-cycle activities after the requirements have been developed. Many data communications books do not address these areas at all, yet it is in installation and operations that many graduating students will find rewarding jobs and careers.

SUPPLEMENTS __

We have written an *Instructor's Guide* to accompany our text in the hopes of assisting our colleagues. This Guide includes:

- · Answers to Exercises in the text
- Solutions to Problems in the text

 Chapter outlines to use as lecture guidelines

xix

- Conversion notes to help you convert from your present text
- Teaching suggestions for the instructor
- Alternative course syllabi for planning courses of various lengths and levels

ACKNOWLEDGMENTS

We gratefully acknowledge the permission of Pacific Bell, PacTel Mobile Service, Pactel Mobile Access, Northern Telecom, Nippon Electric Co., Ltd., and AT&T Technologies, Inc. to reproduce their copyrighted photographs. We also wish to express our appreciation to Atlantic Research Corporation, AT&T Bell Laboratories, The Black Box Corporation, COMTEST Systems, Federal Express Corporation, IBM Corporation, Micom, NEC America, Inc. (Mobile Radio Division), Ungermann-Bass, Widcom, and ZAISAN, Inc. (AN/STI Company, Houston, Texas).

This material has been tested in onequarter, one-semester, and short-course environments, and we are grateful to the many students and reviewers who provided comments and remarks that helped to improve it.

Steven Baumgartner California State University, Los Angeles C. Andrew Belew Ferris State College Anne Burroughs Humboldt State University David Doss University of Evansville Teruo Fuiii Miami University, Ohio John Gotwals Purdue University Richard Halapin Indiana University of Pennsylvania

Carol Hicks
Georgia State University
Cynthia Johnson
Bryant College
William Lau
California State University,
Fullerton
Marilyn Mantei
University of Michigan
Douglas May
Appalachian State University
Roger McGrath
University of South Florida
Curtis Rawson
Kirkwood College

William Riehl Virginia Commonwealth University

Ken Sochats University of Pittsburgh

Ed Solinski Indiana University-Purdue University, Indianapolis

Also, we want to thank Jeri M. Collari for her invaluable help; her suggestions, insights, and enthusiastic support helped to make this book possible.

Bennet P. Lientz Kathryn P. Rea

CONTENTS IN BRIEF

PART I _____ COMMUNICATIONS TECHNOLOGY 1

- 1 Introduction 2
- 2 Voice Communications 27
- 3 Data Transmission 54
- 4 Communications Equipment 83
- 5 Communications Software and Protocols 112
- 6 Local Area Networks 141

____ PART II MANAGERIAL APPLICATIONS 169

- 7 Analyzing Voice Communications and Office Automation Systems 170
- 8 Analyzing Data
 Communications
 Requirements 191
- 9 Communications and Systems Planning 210
- 10 Design of On-line Systems
- 11 System Installation 246
- 12 Management Control, Audit, and Security 263
- 13 Operations 283

References 300

Glossary 303

Abbreviations, Acronyms, and Model Definitions 312

Index 317

CONTENTS IN DETAIL

Each chapter concludes with a Chapter Summary, Chapter Exercises, and Chapter Problems.

PART I _____ COMMUNICATIONS TECHNOLOGY 1

1 INTRODUCTION 2

THE EXPLOSIVE GROWTH OF COMPUTER AND COMMUNICATIONS TECHNOLOGY 2

WHAT IS ELECTRONIC COMMUNICATIONS? 2

FORMS OF INFORMATION 3

EARLY COMMUNICATIONS SYSTEMS 3

The Development of the Telegraph 4
The Invention of the Telephone 4

The Advent of Radio and

Television 4
The Use of Computers in

Communications 4

ELECTRONIC COMMUNICATIONS AND THE BUSINESS WORLD 5 Levels of Communications Tasks 5 The Components of Communications Costs 6 The Impact of Electronic Communications on Corporate Success 7

COMPONENTS OF A
COMMUNICATIONS SYSTEM
Voice Communications
System 8
On-line Computer
Communications System 8
Common Elements of
Communications Systems 9

PERFORMANCE MEASURES OF A COMMUNICATIONS SYSTEM 9

EXAMPLES OF ELECTRONIC
COMMUNICATIONS SYSTEMS
Single Microcomputer 10
Cluster of Terminals, Printers, and Microcomputers 10
Mixture of Telephone and Terminal Equipment 10
Local Area Network 11
Dedicated Organization
Network 12
Public and Value Added
Networks 12

CHANGE AND GROWTH IN A COMMUNICATIONS SYSTEM 14

THE DEVELOPMENT OF A
COMMUNICATIONS-BASED
SYSTEM 15
Stages of Development 15
Project Structure and Project
Management 16
Operation of the System 16
Alternative Approaches 17
Advantages and Disadvantages of the Life-cycle Approach 18
A Closer Look at
Communications System
Costs 18

BENEFITS OF COMMUNICATIONS-BASED SYSTEMS 20

FUTURE COMMUNICATIONS
TECHNOLOGY AND SERVICES 23
Technology 23
Applications of the
Technology 23

CAREERS RELATED TO COMMUNICATIONS 24

2 VOICE COMMUNICATIONS

27

VOICE COMMUNICATIONS
TRENDS AND THEIR IMPACT 27
Examples of Impact 28

MEASURES OF VOICE COMMUNICATIONS PERFORMANCE 28

HOW VOICE COMMUNICATIONS WORKS 29

The Technology of a Telephone
Call 30
The Function of Switching
Centers 31
The Switching Operation 31
Traffic Intensity 32
Electronic Switching Systems 32

SUPPORT OF BUSINESS TELEPHONE TRAFFIC 33

Centrex 33
Private Automated Branch
Exchange 34
Telephone Management
Systems 37
Social Implications and Impacts
of Telephone Management 38

A HISTORY OF REGULATION AND DEREGULATION IN VOICE COMMUNICATIONS 39 Regulation of Communications Services 39

International Regulation and Standardization 39 Federal Communications Commission 41

CARRIERS 41

Wide Area Telephone Service 41 800 and 900 Services 42 Bypass Technology 43 Selecting a Carrier 44

COST FACTORS IN A TELEPHONE BILL. 44

TRAFFIC MANAGEMENT 45
A Brief Example 45
Objectives and Analysis of Line
Use 45

EMERGING TECHNOLOGIES 46 Cellular Radio 47 Teleconferencing 51

3 DATA TRANSMISSION 54

THE COMPONENTS OF A DATA COMMUNICATIONS SYSTEM 54

CHARACTERISTICS OF DATA TRANSMISSION 54

BASIC DEFINITIONS 55
Basic Data Transmission 55
Analog and Digital Signals 56

CONTENTS IN DETAIL ix

Errors in Signal Transmission 56 Signal-to-noise Ratio and Channel	4 COMMUNICATIONS EQUIPMENT 83
Capacity 57 TRANSMISSION CODES 57 ASCII 57	LONG-TERM VERSUS SHORT-TERM ECONOMIC PERSPECTIVE 84
EBCDIC 59 Baudot Code 59 Code Incompatibility 59 Code Efficiency 60 SERIAL AND PARALLEL TRANSMISSION 60	HARDWARE COMPONENTS 84 Acoustic Couplers 84 Modems 85 RS-232-C Interface 90 RS-449 and X.21 Interfaces 90 ISDN Interface 90 Multiplexers, Concentrators, and Controllers 91 Packet Assembler/Disassemblers 96 Front End Processors 96 Convertors 98 Emulators 99 Terminals 99 Security and Encryption Devices 99 Data Switching Devices 100 Facsimile Devices 103 Other Hardware Devices 105
ASYNCHRONOUS AND SYNCHRONOUS TRANSMISSION 60 Asynchronous Transmission 61 Synchronous Transmission 62	
MODULATION 63 TRANSMISSION MEDIA 65 Wire or Cable 65 Fiber Optics 67 Microwave 68 Satellite 68 Radio 73	
Comparing Different Transmission Media 73 COMMUNICATIONS SERVICES 74 Dial-up Lines 74 Local Telephone Company Leased Lines 74 Long-haul Leased Lines 75 Unloaded Lines 75 Dataphone Digital Service (DDS) 76	TESTING AND DIAGNOSTICS 106 Diagnostics 106 Breakout Box 107 Network Probe System 107 Test Equipment 108 Automated Test Stations and Systems 109 Benefits of Testing Equipment 110
303 Wideband Service 76 Service Costs 76	5 COMMUNICATIONS SOFTWARE AND PROTOCOLS 112
VALUE ADDED NETWORKS 76 Telenet 77 Comparison of Value Added Carriers 80 INTERNATIONAL NETWORKS 80 Canada 80 Europe 81	SOFTWARE CATEGORIES 112 OPERATING SYSTEMS 114 System Operation 114 Microcomputer Operation 115 Tasks, Priorities, and Queues 116

Minicomputer and
Microcomputer System
Software 116
Multiple versus Single Computers
in a Network 117
Distributed Data Processing 120

PROGRAMMER AND END USER OPERATIONS 120

ON-LINE TRANSACTIONS 120
Setup 120
Logging On 121
Processing the Logon
Information 122
Menu Selection 122
Transaction by User 123

PUBLIC PACKET SWITCHING NETWORKS 124

ISO LAYERS 125 Incompatibility Without Standards 125 Relationships Between Layers 125

PROTOCOLS 126
Asynchronous Protocols 126
Remote Job Entry (RJE)
Protocols 126
Synchronous Protocols 127
Implementation of Protocols for Microcomputers 129
Protocol Evaluation 129

Prearchitecture Systems 130
Components of Architecture 130
Implementation of the
Architecture 131
System Network
Architecture (SNA) 131
Telecommunications Access
Methods 132
Network Control 134
Other Architectures 134

MINICOMPUTER COMMUNICATIONS: UNIX 135

TIMESHARING SYSTEMS 135

DATA BASE MANAGEMENT SYSTEMS (DBMS) 136 Objectives and Components of Data Base Management Systems 136 Commercial Data Base Management Systems 136 Benefits and Uses of a DBMS in a Network Setting 138

FOURTH GENERATION LANGUAGES 138

INTERFACE OF A NETWORK WITH APPLICATION SYSTEMS 138

6 LOCAL AREA NETWORKS 141

OFFICE AUTOMATION 141

LOCAL AREA NETWORKS
DEFINED 141
Development of LAN
Technology 142
Justifying the Use of a Local Area
Network 142

OVERVIEW OF LAN OPERATION 142

BENEFITS OF LOCAL AREA NETWORKS 143 Hardware Sharing 143 Sharing of Software and Information 144 Other Benefits 144

LIMITATIONS OF LOCAL AREA NETWORKS 145 LAN Competitors 145 Software Limitations 145

	1
COMPONENTS OF A LOCAL AREA NETWORK 146 Topology of the Network 146 Hardware Components 148	MANA APPLICA
Cable Media 149 Network Control 150 Baseband versus Broadband 151 Software Functions 152	7 ANALYZING COMMUNIC OFFICE AUT SYSTEMS 17
LAN EVALUATION AND EXAMPLES 154 Ethernet (Xerox) 154 WANGNET (Wang Laboratories) 156	OBJECTIVES O ANALYSIS 170 Primary Obje Specific Obje
LANs from IBM Corporation 156 OMINET (Corvus Systems) 157	DEFINING THE SYSTEM 171
ARC (Datapoint) 157 DECNET (Digital Equipment Corporation) 157	ANALYZING CC REQUIREMENT Initial Data C Examples of
TECHNICAL FUNCTIONS OF LANS 158 Software Transfer 158	THE COMMUNILAYOUT 172
Hardware Transparency 158 Startup and Security 159	INSTALLING A I NETWORK 173 Cabling 173
VENDOR SUPPORT 159	Number and
CONFIGURATION SIZING 159	Stations 173 Future Expan
COST ANALYSIS 160	COMMUNICATI EXTERNAL SITE
COST COMPARISONS 160	CONFIGURATIO
OPERATION OF A LOCAL AREA NETWORK 162 The End User Perspective 162	REQUIREMENTS MANAGEMENT SYSTEM 176
Multitasking Benefits to the User 162 Network Management 163	POTENTIAL TRI GROWTH AND
CHARGING FOR THE	TIMING OF GRO CHANGE 177
NETWORK 163	DETAILED EVAL

164

165

CAPACITY MANAGEMENT

TECHNOLOGY TRANSFER

RT II GERIAL TIONS 169

VOICE ATIONS AND OMATION 70

> F SYSTEMS ective 170 ectives 170

E SCOPE OF THE

DMMUNICATIONS S 171 Collection 171 Problems 172

ICATIONS

LOCAL AREA 3 Type of nsion 173

ON LINKS TO S 173

ON ANALYSIS 175

S FOR THE OF THE

GGERS OF CHANGE 177

OWTH AND

D EVALUATION AND SELECTION OF TELEPHONE SYSTEMS 178 Data Collection 178

Analysis of Data and Tactical Objectives 180 Analysis Results 180 Solicitation of Proposals 181 Evaluation Team 181 Standard Proposal Format 182 Proposal Preparation 183 Bidders' Conference 183 Evaluation of Vendor Proposals 183 Vendor Negotiation 186

AN EXAMPLE OF THE EVALUATION AND SELECTION PROCESS 188

8 ANALYZING DATA COMMUNICATIONS REQUIREMENTS 191

DRIVING FACTORS 192

DATA COMMUNICATIONS REPORT ON REQUIREMENTS 192

METHODS FOR TRAFFIC ESTIMATION 192

Geographic Status 192 Traffic Estimation 194 Communications Traffic Table 197 Multiple Systems 197

NETWORK TOPOLOGY AND LINE SIZING 197

Network Alternatives 198 Evaluation of Alternatives 198

STAGING APPROACH TO A NETWORK 200

SUMMARY OF THE STEPS IN COMMUNICATION LINE SIZING 201

FACTORS OTHER THAN COST 202 COMMUNICATIONS REPORT 202 ADDITIONAL ANALYSIS 203 THE EXISTING NETWORK 203

METHODS OF EQUIPMENT SIZING 204

Communications Hardware 204 Printers 204 Computer Terminals 205

COST ANALYSIS AND ALLOCATION 205

OTHER DEVICES AND COMPONENTS 206

SOFTWARE COMPONENTS 206
STAFFING REQUIREMENTS 206
TREATMENT OF COSTS 206
BENEFITS OF THE NETWORK 207

9 COMMUNICATIONS AND SYSTEMS PLANNING 210

MANAGEMENT REVIEW

LACK OF COMMUNICATIONS PLANNING IN THE PAST 210

BENEFITS OF PLANNING 211
Access to Multiple Systems 212
Compatible User Dialogue Across
Systems 212
Flexibility in Placing New
Systems 212
Support After
Implementation 212

MANAGEMENT NEED FOR PLANNING 213

CATEGORIES OF PLANNING 213
Specific Planning Methods and
Business Systems Planning 214
Applications Systems Versus
Communications Planning 214

LONG-RANGE SYSTEMS PLANNING PROCESS 214
Stages of the Process 214

CONTENTS IN DETAIL xiii

The Environment 215 Objectives 216 Constraints 216 Strategies 217 Project Candidates 218 Documentation of the Long-range Systems Plan 219 RESOURCE PLANNING PROCESS 220 Linkage with the Long-range Systems Plan 221 Categories of Projects 221 **OVERALL PLANNING PROCESS** REVIEWED 222 RESULTS OF PLANNING 223 MEASUREMENT OF SUCCESS IN PLANNING 223 COMMUNICATIONS FOR COMPETITION AND EXPANSION 223 MANAGEMENT CONTROL AND REVIEW 224 **10 DESIGN OF ON-LINE** SYSTEMS 226 LOGICAL AND PHYSICAL DESIGN 226 **DESIGN DEFINED** 226 MYTHS OF DESIGN AND DEVELOPMENT 227 The Myth of Correctness 227 The Myth of Level of Effort 227 The Myth of Completeness 227 The Myth of the Technician 227 **DESIGN OBJECTIVES** 228 User Design Objectives 228

Information Systems Design

Objectives 229

Management Design Objectives 229 THE SCOPE OF THE DESIGN Surrounding a Batch Application System 230 Completely On-line System 230 THE END PRODUCTS OF THE LOGICAL OR FUNCTIONAL DESIGN 231 PRIORITY OF DEVELOPMENT 231 AN EXAMPLE SYSTEM 232 DEFINING THE DIFFERENCE BETWEEN DESIGN TECHNIQUES AND DESIGN TOOLS Design Techniques 232 Design Tools 232 DATA BASE DESIGN 233 DESIGN OF THE SYSTEM STRUCTURE 234 Structure Guidelines 234 Techniques and Tools 235 SCREEN, KEYBOARD, AND TERMINAL DESIGN 236 Screen Design 237 Terminal Type 237 Help Messages 238 **DESIGN OF REPORTS** ELECTRONIC MAIL 238 **DESIGN OF INDIVIDUAL** PROGRAMS OR MODULES 240 PROTOTYPING TECHNIQUES 240 Levels of Prototyping 240 Limitations of Prototyping 242 DESIGN DOCUMENTATION DESIGN REVIEW 243 DECISION SUPPORT SYSTEMS INFORMATION CENTERS 244

11 SYSTEM INSTALLATION 246

PABX INSTALLATION AND SETUP 247 PABX Installation 248 Setup of the PABX 248

FACILITIES AND CABLING 249
Approvals and Building
Codes 250
Local Area Networks 251

HARDWARE AND SOFTWARE INSTALLATION 251

DATA FOR TESTING AND TRAINING 252

USER PROCEDURES AND TRAINING MATERIALS 252 User Procedures 252 Training Materials 253

OPERATIONS AND NETWORK PROCEDURES 254 Batch Operations Procedures 254 On-line Procedures 254

DATA CONVERSION 255
Conversion with Automated
Source of Data 255
Conversion of Manual Files 255

TABLE SETUP 256

SYSTEM TESTING 256

USER TRAINING 257

ACCEPTANCE OF THE SYSTEM 257

ACCEPTANCE TESTING 258

ALTERNATIVE METHODS OF CONVERSION 259

Direct Conversion of Turnover 259 Parallel Conversion 259 Modular Conversion 259 Pilot Conversion 259 INSTALLING A NEW ON-LINE SYSTEM ON AN EXISTING NETWORK 259

12 MANAGEMENT CONTROL, AUDIT, AND SECURITY 263

EXPOSURE AND RISK 263

DEFINITIONS OF SECURITY AND CONTROL 265

CONTROL MEASURES 265

GENERAL STEPS IN
IMPLEMENTING CONTROLS 266
Computer Facilities and Overall
Network 266
Individual System 266

COMPUTER CRIME 267
Examples 267
The Role of Electronic
Communications 270

LEGAL REGULATIONS AND PROFESSIONAL STANDARDS 270

PHYSICAL EXPOSURE 271

ACCIDENTS DUE TO EMPLOYEES 271

SOFTWARE AND SYSTEM ERRORS 271

SUMMARY OF EXPOSURES 272

PHYSICAL SECURITY AND CONTROLS 272

Fire, Smoke, and Natural Disaster Controls 272 Access Control 272 Restriction of Dial-up Lines 273

DISASTER RECOVERY 273

COMMUNICATIONS CONTROLS 274

Alternate Routing 274 Error Detection and Correction 274