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MECHANISMS OF POWDER MIXING AND DEMIXING

Karl Sommer®

Classification of mixing process can be influenced
by significant motion in the mixers. While this
classification is only an empirical one, the clas-
sification in systematical or stochastical proces-
ses hints at internal mixing processes. In this
paper there is an special attention to the demi-
xing of powders. In principal there are two differ-
ent possibilities in demixing: 1. Demixing caused
by convective transport and 2. Demixing caused by
diffusion with concentration dependent diffusion
coefficient. The theoretical considerations give
hints for practical working. In order to stud{
these mechanisms, ballotini were mixed in a glass
drum.

INTRODUCTION

Mixing is one of the oldest unit operations. The earliest mixing
vessels that could positively be identified as such were mortars.
In ancient times, they were used in the production of natural
earth pigments such as ochre, manganese oxide, etc. Then, the mi-
xing process was accompanied by size reduction, and this feature
of dry-solids mixing has remained with us today. Despite the long
history of dry-solids mixing, or perhaps because of it, compara-
tively little is known of the mechanisms involved. All the experi-
ence that has been gained ever since solids were first mixed by
man some 30 000 to 40 000 years ago has been handed down through
the ages - formerly from medicine man to medicine man and nowadays
from foreman to foreman. By continuous trial and error, a degree
of perfection has been achieved that could hardly be improved upon
by scientific approaches.

Serious efforts at studying the dry-mixing of solids do not
extend back more than the last decade. In view of the growing num-
ber of tasks involving mixing techniques, the increasing demands
imposed on quality, and the trend towards rationalisation and me-
chanisation of processes, criteria must be found for comparing the
performance of various types of mixers. In other words, it is be-
coming more and more imperative to gain knowledge on the mecha-
nisms of mixing. The attendant problems can be divided into two
categories:

X BASF Aktiengesellschaft, 6700 Ludwigshafen, Deutschland
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a) Classifying and measuring the degree of mixing, i.e. determi-
ning the quality of the mixture (1 to 6).

b) Describing the mixing process, i.e. description and explanation
of the change in the quality of the mixture with respect to
time.

CLASSIFYING MIXING MECHANISMS ACCORDING TO THE PREDOMINANT FORM OF
MOTION

Mixing mechanisms can be classified systematically according to
the types of motion applied. An example for a classification of
this nature has been put forward by Rumpf and Mueller (7).

a) Mixing within the bulk material

b) Centrifugal mixing ®) in a gravitational field
p) in a centrifugal field

¢) Mixing in a fluidized bed

d) Mixing solids in a suspended condition
e) Free-fall mixing

f) Mixing‘several streams of materials.

a) The first type of mixing consists of initiating within the bulk
of the material a movement that displaces the solid particles
relative to one another. The mixer or mixing elements must move
slowly, an example being low-speed worm-type mixers. If the
particles flow around the moving parts of the mixer, a state of
stationary flow occurs within the bulk of the material.

b) In centrifugal mixing, some of the solids are detached from the
bulk of the material and are rearranged in the air space of the
mixer. They then return to the surface of the mixture. The
force acting on the solids may be gravity or centrifugal force.

¢) If mixing within the bulk of the material proceeds at high
speeds, particles are thrown off, or air is drawn into the bed.
Thus the particles move apart, and the bed assumes the charac-
ter of a liquid. The fluidized state can be maintained by in-
creasing the rate of air flow. This is the principle adopted in
Pneumatic mixers, which are gaining a firm foothold in practice.

d) Here, the solids are completely suspended in a gas. They can be
kept in suspension by maintaining the flow of gas at a suffi-
ciently high velocity or by agitation in high-speed mixers
(8 - 11).

e and f) If the streams of solids to be mixed are metered and flow
steadily, they mix in the desired proportions at the point of
intersection. The solids may flow under gravity, e.g. in run-
ning out of a bunker, or they may be fluidized or conveyed pneu-
matically.

S1/a/2
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SYSTEMATIC MIXING

Ideally, the aim of any mixing mechanisms is to distribute the in-
gredients in such a manner that each particle of the one is adja-
cent to a particle of the other(s). In practice, the best that can
usually be achieved is random distribution.

In the systematic processes that take place in all statisti-
cal mixers (12 - 14), streams of material are systematically dis-
tributed and rearranged and redistributed and rearranged ad infi-
nitum.

Another form of systematic system is laminar mixing (Fig. 1),
which is applicable to very viscous materials. It consists of in-
troducing the material between two parallel plates that move rela-
tive to one another. At first, the particles of the ingredients
are pulled wide apart, i.e. distributed, and they are then allowed
to mix. A particular case is Couette flow in the annular gap beet-
ween two concentric counter-rotating cylinders. Theoretically, any
desired degree of mixing can be achieved by varying the number of
revolutions.

In analogy to this laminar flow mixing model, mixing in lay-
ers can also be observed in solid mixtures (Fig. 2). However, the
macroscopic physical laws pertaining to the bulk of the material
are not so simple as those that apply to liquids. Thus, if the
internal forces of friction acting on a crack that has been caused
by fortuitous instability are overcome, the bulk of the material
is loosened. This prevents the formation of a homogeneous field of
shear in the gap and thus allows only a thin zone in which mixing
can take place. If the gap is annular, mixing would occur only in
a thin zone of shear, even after the mixer had rotated through an
infinite number of revolutions; the material in the other zones
would behave as a rigid unyielding body.

RANDOM MIXING

Random movements within the bulk of the material also improve the
quality of the mixture. The feature of this form of mixing is that
the particles are arranged at random and not in a predetermined
manner throughout the mixture. Mueller and Rumpf (15) have demon=-
strated that random movements can be described, independently of
the motion induced by the moving parts of the mixer, by the theory
of stochastic processes (16). .

Normally, more than one coordinate is required to fix the
position of a particle. For the purposes of this paper, the sy-
stems are described in terms of the one single coordinate. In most
practical cases involving mixers with purely axial movement, this
is quite permissible if the indicator is initially inserted in a
plane perpendicular to the axis or if mixing in the other direc-
tions is so rapid that the time that would be required is negligi-
bly short compared to that required in axial mixing. If this is
not the case, average concentrations can be taken perpendicular to
the coordinate selected.
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Mixing by diffusion. One of the probable random processes is dif-
fusion. It can be described formally by Fick's equations (17).

M= -p 29(x) Fick's first law (4.1)
0x
dgq(x) _ 2 (D' 2a(x) Fick's second law (4.2)
ot ox 0x ’

Fick's first law [Eqn. (4.1)] states that the mass flow M in
a cross-section through the int x is negative proportional to
the concentration gradient q(x)/ dx at this point. The constant
of proportionality D is referred to as the diffusion coefficient
and is expressed in the unit of area/time. It is not a primary
physical magnitude in the Fick partial differential equations but
a fitting parameter that depends on the conditions of measurements.
The diffusion coefficient might well be a function of concentra-
tion at point x. It is usually assumed to be positive for liquids;
but, as will be demonstrated later, this is not necessarily the
case for a stochastic process. If it is positive, mass flow is
always in the direction of the lower concentration. Mixing always
occurs if the diffusion coefficient is positive.

Fick's second equation [Eqn. (4.2)] describes the change in
concentration at point x with respect to time. If the diffusion
coefficient is positive and remains constant, a particular solu-
tion to the differential equation can be found for a simple drum
mixer of length L (18). If it is assumed that the walls of the
drum are impermeable, the limits can be obtained from the fact
that there is no mass flow at x = 0 and x = L. In this case, the
partial differential coefficient in Fick's first equation will
become zero. The initial limiting condition can be satisfied by
assuming that the ingredients are completely separated to start
with. The solution thus obtained is a Fourier series (18). If the
simplifying assumption is made that the one ingredient is present
in very small amounts, the following cosinusoidal expression is
obtained for Agq(x,t), i.e. for the difference at time t between
the concentration at point x to the average concentration g in the
entire mixture.

ODg(x,t) =2 qcosT e (4.3)

9 H3

If the point x is fixed, A g decreases exponentially with
time. Thus if the coefficient of variation @'= 6 /3 is taken as
a measure for the quality of the mixture, the following simplified
form is obtained:

2
LS
T o

G = Vz_e (4.4)
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On log-log paper, this relationship is a straight line, and
the slope allows the diffusion coefficient to be determined exper-
imentally. After infinite time, the conceptration throughout the
mixture will be entirely uniform, i.e. &' = 0. However, the vari-
ance in the experiment is governed by sampling. Therefore, the
measured value for the total variance contains an additional term
that describes the random error in sampling (5, 18).

As an example, the experimental results obtained by Mueller
(15, 18) have been plotted on a log-Iog scale in Fig. 3. In the
experiment, a 300 - 400 um copper fraction was mixed in a.concen-=
tration of @ = 7.67 * 10-3 into a nickel fraction of the same size.
A diffusion coefficient of D = 1.09 cm2/sec is derived from the
slope of the linear initial part of the relationship. It is almost
independent of the length-to-diameter ratio. after a sufficiently
long mixing time, the sampling error predominates, and the meas-
ured values depart from the straight line and asymptotically ap-
proach a fixed value. The final state can be interpreted as sto-
chastically homogeneous to within the degree of accuracy allowed
by the measurements.

Axial mixing with convective processes. If the ingredients in a
mixture of powders have grains of different shape, size or densi-
ty, demixing is frequently observed in stochastic mixing proces-
ses (19 - 27). It cannot be explained by the simple diffusion mod-
el with positive diffusion coefficients. For this purpose,
Markhoff's fundamental theories on random processes must be resor-
ted to. These theories eventually lead to the Kolmogoroff equa-
tions (16), which were introduced for the first time in statisti-
cal dynamics by Fokker (28) and Planck (29) (Fig. 4).

One imagines a large number of completely identical spheres
that are independend with one another, e.g. ballotini in a matrix
of large glass balls. Each of the spheres is in motion. At a cer-
tain time t, the concentration at a point x will be g(x). Each of
the small beads is subjected to very light, rapid blows delivered
at random. The question is how the concentration q(x) at the point
x changes within a certain interval time T . During this period
of time, each of the spheres has received several blows, which may.
change the direction of motion. The sum of all the changes in lo-
cation is expressed by the displacement A z. Each sphere is dis-
placed by a different amount Az, even if they were all located
at the same point x to begin with. The displacements A z are
statistically distributed with a probability density function of
@ (Az). Azmax is the largest displacement that occurs in the
period of time T and must always be small compared to the dimen=-
sions of the mixer. A z is the average displacement of the sphe-
res, i.e. the mean convection. In addition to this convective
movement, stochastic widening of the probability density function
also occurs. It is a widening that is described by the mean square
deviation Az2, where

N

2

Az2 = C° (Az) + Az (4.5)
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Here,{ 62 ( A z) is the variance with the probability densi-~-
ty function @ ( Az).

Since it is a sguare, Az2 is always positive.

Fokker (28) and Planck (29) calculated the change in concen-
tration g(x) that occurs within the section dx from the difference
between the number of particles that migrate from dx during the
interval of time ¥ and the number of particles that enter dx
during the same interval of time. The result was given in the form
of a differential equation.

_— 2 3
icl(_xl-_-__g.. (q(x) 1im ﬂ).‘}._ai (q(x) lim Az )
ot o x T-0 T 2x T-+0 2T

(4.6)

As has already been stated, Az represents the mean convec-
tion of small spheres at point x during the interval of time T .
Thus Az/? is the mean rate of convection. If the limit lim
AzZ/T exists, it is called the transport coefficient T
and has the same unit as a velocity. If the limit lim Azz/t
exists, it is referred to as the dispersion coefficient
D*, and the unit is area/time, i.e. it has the same unit as the
diffusion coefficient D. However, the dispersion coefficient is
not a fitting parameter but is a statistically derived square and
is thus always positive. Hence Egn. (4.6) can be rewritten as

2
2900 - -0 (g0 ) + 25 (am p*0)) (4.7)
ot 0 x 0x

This equation has the same form as Fick's second equation,
in common with which it describes the change in concentration with
respect to time at the point x. The mass flow at a cross-section
through the point x at time t is analogous to that in Fick's first
equation, viz.,

fo(x) = qx) T(x) - —— (am D*(x)) (4.8)
0x

Thus the mass flow consists of two components: transport by
convection Mgy and transport by dispersion Mp. The simplifying
assumption is made that D*(x) = D%, i.e. that D% is independent of
the coordinate x and the transport coefficient T (x) becomes zero,
i.e. T(x) = O. In this case, EqQn. (4.8) becomes converted into
Fick's first equation (4.1), and the dispersion coefficient D% is
identical to the diffusion coefficient. In a mixture whose ingre-
dients are completely separated from one another at time t, equa-
lization by diffusion takes place as described in Section 4.1. The
variance Utgt in the_sample concentration decreases steadily from
the initial state 552 to the size of the sampling error [ %
(Fig. 5 a).

If streams already exist for transporting the materials, two
possibilities occur. If two streams are in the same direction,

S1/a/6
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their movement first of all favours equalization of concentration.
Afterwards, however, the diffusion stream reverses and oOpposes
transportation until both streams are of the same size. The sta-
tionary condition thus reached corresponds to a partially demixed
state. Initially, the gquality of the mixture rapidly improves but
deteriorates again as demixing progresses (Fig. 5 b). If the two
streams of material are in opposite directions from the very be-
ginning, the concentration can never be completely equalized. The
stationary state is partially demixed (Fig. 5 c).

The experiments carried out by Mueller (18) provide a good
example of how these qualitative demixing phenomena can be demon-
strated experimentally (Fig. 6). Demixing was bought about by the
difference in transport characteristics between iron (630 - 750
Jam ) and quartz (100 - 200 aum) and between iron (300 - 400 am)
5nd limestone (40 - 60 aum). In the first experiment, the diffu-
sion and transport streams were in the same direction; and in the
second, in the opposite direction. The empirical coefficients of
variation reflect the course of events predicted in the model.
Hence, Experiment No. 1 first gave rise to a homogeneous mixture
and then to demixing, and a random homogeneous distribution was
not attained at any time in Experiment No. 2.

Axial mixing without convection processes. Demixing when the dis-
persion coefficient is constant, as was described in the previous
section, always occurs if the moving parts in the mixer set up
selective transportation that opposes mixing by diffusion. The
same applies if the drum is tilted. Such demixing has also been
observed to occur in drum mixers without the participation of ex-
ternal convection mechanisms. However, it has been demonstrated
that if the transport coefficient tends to zero and the dispersion
coefficient remains constant, the concentration is always equal=-
ized. For this reason, it should always be investigated whether
the demixing observed can be explained by a dispersion coefficient
that depends on the concentration or that is subject to local
variations. Substituting T(x) = O in Eqn. (4.8) gives

fix) = - > (q(x) D*(x)) (4.9)
0x

If the product is first differentiated with respect to con-
centration and the concentration is differentiated with respect
to x, an equation is obtained that is comparable to the first
Fick equation.

. - +
M(x) = - ___a_ﬁ_u- . Qg(_x)_ (4.10)
Jq dx

If it is assumed that the dispersion coefficient depends
only on concentration, application of the product rule gives

.
Mx) = - 0" +gq —oa—D—) 29 (4.11)
q d x
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The term in parenthesis corresponds to the Fick diffusion
coefficient, i.e.
+
p= (" +q22, (4.12)
0q

Although the dispersion coefficient ot is, by definition,
always positive, the diffusion coefficient may be negative. This
is precisely the case when the relationship of D* to concentration
gives rise to a sufficiently large negative differential coeffi-
cient. Under these circumstances, mass flow exists in the direc-
tion of higher concentration ; in other words, the ingredients
demix. :

In order to study these mechanisms, ballotini was mixed in a
glass drum of 205 mm length and 114 mm diameter. First of all,
pale and dark balls of the same size, viz. 2 mm diameter, were
mixed in a ratio of 1 : 1. The mixer was 39 % full, and the speed
was 45 r.p.m. Since the balls were of the same size and of the
same material, it could be safely assumed that the dispersion co-
efficients were constant and independent of concentration. The
contents of the drum were quickly mixed, i.e. within about 20 mi-
nutes, to stochastic homogeneity (Fig. 7).

If small glass spheres (of 1 mm diameter) are mixed with
larger ones (of 2 mm diameter), the small balls will be more mo-
bile in a matrix of larger balls than they would be if they were
surrounded by balls of their own size. Thus the dispersion coeffi-
cient decreases with increase in concentration. If the decrease is
significant enough, the diffusion coefficient may be negative.
Under these circumstances, the ingredients, which were completely
separated at first, would not mix. And, in actual fact, when prac-
tical tests were run, it was observed that the ingredients really
did not mix, even after long periods of mixing. The contents of
the drum remained demixed.

If there is a layer of small balls above the large ones, the
concentration in the axial direction is completely equalized to
begin with. For this reason, a diffusion stream cannot possibly
exist. However, if it is assumed that the diffusion coefficient is
negative, this equilibrium will be unstable. Disturbances can
always occur because of the boundary conditions and of the irreg-
ularities in placing the balls in position. As a result, shifts in
concentration could occur, and the possibility of demixing would
arise. It can be seen that, in the tests (Fig. 8), disturbances
of this nature occurred near the ends of the drum on the left-hand
and right-hand sides. Within a mixing time of five minutes, the
concentration of the smaller balls increased in the radial seg-
ments of these zones and decreased in the other zones. The demi-
xing observed remained stable even during the periods of mixing.
The number of disturbances depends on the length of the drum mixer.
By varying the geometry of the drum, Donald and Roseman (19) were
able to provoke numerous streaks.

The symmetry observed in this form cannot be expected unless
the initial conditions are symmetrical. If disturbances are intro-
duced in the form of local increases in concentration, individual
streaks can be programmed at various points (Fig. 9).
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On close observation, it can be recognized that the amount
of small balls that have concentrated in streaks no longer ac-
counts for half of the contents of the drum as it 4id at the be-
ginning. Hence, many of the small balls must still be mixed in the
matrix of large balls. This fact can also be explained by the
theory. Egn. (4.11) shows that the diffusion coefficient for a
concentration g -= O is always positive, even if the partial
differential coefficient @ DY/ 23 q has a large negative value.
Thus, at low concentrations, the ingredients can always be mixed.
For instance, it could be assumed that there is a linear relation-
ship between two dispersion coefficients for the small balls, i.e.
DT at a concentration of g -+ 0 and DzT at a concentration of g=1.
In this event, the limit for demixing in the first case (D21)
would be goq = O0,5. In the second case (ng), it would be at the
higher level of concentration qo2 (Fig. 10). If the concentration
is lower than the limiting value go, the diffusion coefficient is
positive, and the concentration will egualize by diffusion. If
the concentration is higher than gp, demixing results.

If the ratio of the dispersion coefficients is D? : D;3 =
1 : 2, the limiting concentration is at gp3 = 1. In other wofds
at this ratio and all others that are closé to unity, demixing
does not occur.

It was a mere assumption that the relationship to concentra-
tion was linear. Owing to the high limiting concentration of qo
> 0,5 for the system that was investigated experimentally, line-
arity could not be expected. However, if the relationship obeys,
say, the Gauss error function, the demixing limit gpg could lie
at the point of inflection of the curve. Hence, it may occur at
much lower concentrations, as is shown in Fig. 10,

Practical conclusions. The relationships postulated between the
dispersion coefficient and the concentration are purely arbitrary.
The first attempts to determine dispersion coefficients for solids
originated from Cahn and Fuerstenau (30, 31), but unfortunately
their results were not of general validity. Nevertheless, the
method of considering mixing mechanisms as stochastic processes
can lead to gqualitative conclusions. Mueller (18) showed that, if
there is a tendency to demix as a result of convection mechanisms,
slight modifications, such as fitting or dismantling mixing ele-
ments, may alter the selective transport characteristic. Ullrich
(23) recommended that tendencies towards convective demixing
should be compensated, if possible, by judicious selection of the
grain size and density.

If it is known that two ingredients tend to demix as a con-
sequence of a negative diffusion coefficient, the dispersion co-
efficient must be made less dependent on the concentration. In
practice, this is achieved by using fluidized bed and centrifugal
mixers. By this measure, the mean free path between the particles
becomes large compared with the size of the particles. Hence the
mobility of an individual particle is less dependent on the- size
of those surrounding it. There is no doubt that the success of
fluidized bed and centrifugal powder mixers can be attributed to
the absolutely larger dispersion coefficient and the reduced de-
pendence on concentration. However, they incur the great risk
that the mixtures, although homogeneous at first, may become de-
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mixed during the slow discharge and filling phases as a result of
the dependence of the dispersion coefficient on concentration.

Another means of homogenizing materials that tend to demix
is to add small amounts of a liquid (32). It has already been
adopted in practice. The liquid forms bridges between the parti-
cles. Although the dispersion coefficients are greatly reduced as
a consequence of the restricted mobility, the difference in the
surroundings and thus the dependence on concentration no longer
exert their dominating influence. As a result, a diffusive mixing
process can be realized.

The addition of about 1 % wt of water to a charge consisting
of 1 mm and 2 mm glass balls led to stochastic homogeneity within
a mixing time of 10 minutes.

SUMMARY

Mixing mechanisms may be initiated by the predominant form of mo-
tion in a mixer, but this method of classification is purely em-
pirical. Classification into systematic or stochastic processes
gives an indication of internal mixing processes. Particular at-
tention is drawn to demixing phenomena, which are of great signi-
ficance for powder mixtures. A distinction can be made between two
basic mechanisms -~ demixing caused by convection and demixing re-
sulting from the dependence of the dispersion coefficient on the
concentration. The theoretical considerations lead to qualitative
practical conclusions.

LIST OF SYMBOLS

= Diffusion coefficient (m%/s)

D

p* = Dispersion coefficient (mz/s)

L = Length of drum mixer (m)

ﬁ(x) = Mass flow at cross-section through the point x (kg/(s-mz)

MD = Mass flow as a result of dispersion (kg/(s~m2»

ﬁT = Mass flow as a result of convection (kg/(s'mzn

q(x) = Concentration at point x (kg/m3)

a = Average concentration throughout the mixer (kg/m3)

95 = Limiting concentration between demixing and mixing
(kg/m3)

t = Time (s)

T . = Transport coefficient (m/s)

X = Coordinate of particle in mixture (m)

Az = Path through which a particle is displaced in axial

mixing (m)
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P(Az)

S/g

12.
13.
14.
15.
16.

17.

18.

19.
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= Probability density function for the displacement under-
gone by particles in axial mixing

= Variance
= Standard deviation
= Coefficient of variation

-~ Interval of time in which the concentration g(x) changes
at the point x (s)~
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