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On Cycles and Chaos in Economics

Jess Benhabib

Department of Economics
New York University
benbabib@fasecon.econ.nyu.edu

The possibility of cycles and chaos arising from nonlinear dynamics in economics emerged in the literature in
the 1980s, and it came as a surprise.! The possibility of deterministic cycles in economic models had been
noted before, for example in the well-known multiplier-accelerator models, but not in equilibrium models
with complete markets, no frictions, and full intertemporal arbitrage.” The reason for the surprise was
understandable: deterministic fluctuations in equilibrium models involve predictable changes in relative prices
which should be ruled out by intertemporal arbitrage. In models of overlapping generations, however, finite
lives can restrict complete arbitrage over time. As a result, some people thought, and still think, that cycles
that are shorter than the agents’ postulated life-spans would not be possible in equilibrium models, and
therefore are irrelevant for business-cycle analysis. This view is clearly wrong, and of course ignores the
extensive literature on cycles and chaos in optimal growth models with infinitely lived agents. In such models
deterministic cycles in relative prices occur easily, but the amplitudes of the cycles remain within bounds of
the discount rate.® It is not difficult to show in the context of multisector growth models, say with
Cobb-Douglas production functions, that for any positive discount rate there is a large class of technologies
for which cycles occur. (See Benhabib and Rustichini [1990].) Getting chaos, however, is harder. Recent works
by Sorger (1992), by Mitra (1995), and by Nishimura and Yano (1995) give lower bounds for the discount rate,
below which chaos is ruled out for one-sector models of optimal growth. Yet even in that context, going to a
multisector framework may considerably lower the bounds on the discount rate thus far established.

A second reason for the attention that chaotic dynamics received in the economics literature regards
prediction. The common wisdom has been that economic fluctuations are driven by exogenous shocks.
Chaotic dynamics not only supplied an alternative explanation for at least some part of economic fluctuations,
but also provided an excuse for economists’ difficulties with forecasting. Sometimes, however, an important
feature of chaotic dynamics that makes forecasting difficult, namely, sensitive dependence on initial
conditions, is used in a cavalier way to explain short-run dynamics, forgetting that the effect of sensitive
dependence becomes significant only after some periods, but not in the very short run.

When it became obvious that very-standard equilibrium models could easily generate cycles and chaos, the
attention in the literature naturally turned to the empirical plausibility of such dynamics. The most interesting
approach, inspired by developments in natural sciences and mathematics, was also atheoretical, and
reminiscent of VAR methods of time series.* The idea was to try to infer whether a particular economic time
series was generated by a deterministic, low (at most four- or five-) dimensional system that was chaotic, or
whether it came from a simple (linear) stochastic system. It is not difficult to see that such inferences are hard
to make when the time-series data is short, as is the case with most economic series, with the exception of
financial data. It is not surprising, then, that many applications of this approach are in the area of finance, but
even there, where we have very high-frequency data, it is hard to pick up fluctuations that may occur at lower

TAmong the many authors contributing to this early literature were, Benhabib, Boldrin, Day, Deneckere, Grandmont, and Montrucchio. See
the survey in this volume by Nishimura and Sorger (1996).

2Some earlier examples include the well-known cyclical equilibria in overlapping generations model by David Gale (1973), and some not very
robust cyclical counterexamples to the turnpike theorems by Sutherland (1970).

3For example if the discount rate is 4%, relative prices can change by up to 12% over a three-year upswing; how quantities respond would
depend on production possibilities and labor-supply elasticities.

“Among the many authors who contributed to this literature are Brock, Dechert, LeBaron, Scheinkman, and others. A good starting point is
the book by Brock, Hsich, and LeBaron (1991).
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business-cycle frequencies. Another serious limitation of the atheoretical approach is that its conclusions must
be limited to determining whether or not the time series come from a low-dimensional (aggregative) chaotic
system. When resources in the economy are close to fully utilized, much of the fluctuations and disruptions
may occur at the micro level and between sectors. In this context the underlying system may not be “low”
dimensional, and it may also be contaminated by noise. Not surprisingly, therefore, many of the results that
emerge from this empirical approach are either inconclusive or simply reject low-dimensional chaos.

Another (and maybe more fruitful) approach would be to bring back economic theory for purposes of
empirically evaluating the plausibility of chaos and cycles. Maybe less-aggregative models of economic
dynamics could be estimated or appropriately calibrated using microeconomic data. We could then directly
check whether the estimated or calibrated parameters generate significant nonlinearities and fall within the
theoretical range that would generate cycles and chaos. Of course, the theoretical characterization of
high-dimensional systems generating chaotic dynamics is still not fully developed, and is difficult to apply. In
the meantime, we may complement theoretical methods by simulating sensibly parametrized models to obtain
some insight into their dynamics.
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Power Properties of Linearity Tests for Time Series

Timo Terasvirta
Department of Economic Statistics
Stockholm School of Economics
sttimo@bbs.se

Abstract.  This paper examines the power properties of several linearity tests applied in time-series analysis,
The tests are the ones Lee et al. (1993) used in their Monte Carlo study. The main tool used for power
comparisons in this paper is the Pitman asymptotic relative efficiency. The results generally strengthen the
outcome of the simulations and complement some results in Lee et al. (1993). They also suggest guidelines for
designing Monte Carlo experiments for linearity tests.

Keywords.  Bilinear model, local asymptotic power, nonlinear time series, Pitman asymptotic relative
efficiency, threshold autoregressive model.
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1 Introduction

With increasing interest in nonlinear time-series models, testing linearity against nonlinearity has become an
important issue in time-series analysis; see Granger and Terisvirta (1993, chapter 6) for an overview. Recently,
Lee, White, and Granger (1993), henceforth LWG, conducted a wide array of simulation experiments to study
the power properties of a few linearity tests against different types of nonlinearity, including bivariate
nonlinear models. Another study with a similar aim is Luukkonen, Saikkonen, and Terisvirta (1988a). The
main purpose of the present paper is to demonstrate that most of the simulation results of LWG can be
explained or further illuminated using linearization and statistical theory, and, particularly, the concept of
Pitman asymptotic relative efficiency (ARE). This theory can also be used when designing new simulation
experiments. The plan of the paper is as follows. Section 2 briefly discusses most of the tests LWG considered
by means of auxiliary regressions. Section 3 discusses the concept of ARE. Section 4 considers power
properties of tests applied to Blockl models of LWG, and section 5 contains final remarks.

© 1996 by the Massachusetts Institute of Technology Studies in Nonlinear Dynamics and Econometrics, April 1996, 1(1): 3-10



2 Linearity Tests

I shall concentrate on the Blockl models in LWG. For this purpose, consider the following artificial model:

ajz,/ + u,, u; ~ nid(0, 02). (2.1)

k
V= dp +

J=1

If either z; = y,_, (univariate models) or z, = x, (bivariate models), g, = 0, &£ = 2, then the F test of @, = 0
is TSAY1 (Tsay, 1986) as in LWG. If £ = 3 and the above holds except that [ assume g # 0, the F test of
a, = as = 0 is a Lagrange-multiplier-type test of linearity against the hypothesis that the true model is a single
hidden-layer artificial neural network model, as discussed in Terisvirta, Lin, and Granger (1993). This test
often has better power than the test LWG preferred, which is based on the same neural network model.
However, when the true model is not a single hidden-layer neural network model, there are situations in
which the test in Terisvirta et al. (1993) is less powerful than the test in LWG and is not even consistent. A
simple example is the model y, = ,,_V;*_l + u,, u, ~ nid(0, 6?), because the test in Terdsvirta et al. (1993) is
only based on the first three moments and cross-moments of lags of y;. In this paper, I nevertheless take that
test to represent the neural network (NN) test. The reason is that many nonlinear models simulated in LWG
may at least locally in a neighborhood of the null of linearity be approximated by a model resembling
equation (2.1). As will be seen, comparing (2.1) to such a representation makes it possible to find an
explanation for the fact that the NN test sometimes seems to have better power than some other linearity tests.

Furthermore, if z; = f; where f; is the OLS fit of the linear model y, = ay,_, + u,, the F testof a; = 0, j = 2,
in equation (2.1). assuming d, = 0 is RESET (Ramsey, 1969). For Blockl models, f; = ay,—; (or f; = ax;_1), so
that £, can be replaced by y,_, (or x,). If £ = 3, RESET thus coincides with the auxiliary regression version of
the NN test, except that ¢, = 0. The Keenan test (Keenan, 1985) is a special case of RESET such that & = 2,
and for Blockl models the test is thus identical to TSAY1. LWG, however, carry out RESET differently. In their
version, z, = Y., 2} = ﬁ/’.ur, j=2....,k in equation (2.1), where: w, = (37 ,, ..., y¥,) and ﬂ;w, is the t-th
element of the j-th principal component of W = (wy, ..., w;)". For bivariate models, x; takes the place of y,_;.

Next, consider the auxiliary regression

V= ayior + oy F Cnth Y+ Gl Yier + Quth Vi1 Yie2 + g~ nid(0, 0%). (2.2)

The x? (Lagrange multiplier, or LM) test of ¢; = ¢;; = ¢12 = ¢112 = 0 in equation (2.2) is WHITE3 of LWG. For
the origins of this test, see White (1987). The lagged errors are replaced by their estimates from the OLS
regression of y, on y,_;. Note that the test is not a pure linearity test, as the alternative also contains a
first-order moving average term. This explains the results for White tests in Table 5 of LWG for Modell of
Block2. Of the remaining tests, TSAY2 (another version of the test of Tsay, 1986) requires an auxiliary
regression with 16 regressors, 15 of which have zero coefficients under the null of linearity. These auxiliary
regressions form a starting point for considering and comparing the power of different tests.

3 Asymptotic Relative Efficiency

To introduce the concept of Pitman asymptotic relative efficiency (ARE), I consider two nonlinear models and
assume that one of them has generated the data. This model is characterized by the log-likelihood function

.
ar(a.0) =Y _ g(a.¢). (3.1)
t=1

where g isa p x 1 and ¢ an s x 1 parameter vector, and T is the sample size. The other (misspecified or
T

inappropriate) model is characterized by the log-likelihood function pr(a, ) = Z bila,¥), where ¥ is an
t=1

r x 1 parameter vector. Generally, pr(a, @) # gr(a, ¥), but pr(a,0) = gr(a,0). I want to test Hyy, : =0
against Hyy @ ¥ # 0, whereas the relevant null hypothesis is Hyg : ¢ = 0 against Hyy : ¢ # 0, because

equation (3.1) characterizes the true model. Consider a sequence of local alternatives ¢ = 8/T%, § # 0, so that
the data are generated by a model with the log-likelihood function gy (a, 8/ T?). Define

k, = [{8 pi(a, 0)/da) {dpi(a, 0)/3yY (3G(a,0)/3¢)]

4 Power Properties of Linearity Tests for Time Series



with covariance matrix £ = E/_e,/%’ =I[X,l, i. j € {a, ¥, ¢}, where the panition conforms to that of k. Then the
asymptotic distribution of the LM test of Hyy (LMoy ) follows an asymptotlc x; distribution with noncentrality
parameter Ay (a, 8) = 8",y “EW «Zyg.ad, Where T, = T, — T,/ T, (see Saikkonen [1989] or
Luukkonen et al. [1988a]). On the other hand, the asymptotic distribution of the LM test of Hyy is a noncentral
x; distribution with noncentrality parameter A4(a, §) = 8'E44.46. The asymptotic relative efficiency of LMoy is
the following ratio (Saikkonen, 1989):

Ay(a, 8)d(s, a, B)
Aola, 8)d(r,a, B)

AREy(a,8,a, B) = (3.2)

In equation (3.2), d(b, a, ) is the noncentrality parameter of a noncentral X; distribution, such that the
1-p fractile of that distribution and the 1-« fractile of the (central) x} distribution coincide. Values of
d(h, a, B) are tabulated, for example, in Pearson and Hartley (1972, Table 25). If = s, equation (3.2) does
not depend on d. 1f r = s = 1, ARE is also independent of 8. If A, (a, §) = 0, the asymptotic power of LM,
against the local alternative equals the size of the test. It is worth noting already that the McLeod-Li test that
LWG considered has this property for all models included in Block1, as is clear from Luukkonen et al. (1988a).

4 Interpreting Simulation Resuits

I shall now consider the simulation results of Blockl models in LIWG using the auxiliary regression
interpretation of TSAY1, TSAY2, the NN test, RESET, and WHITE3. The nonlinear models in Block2 consist of
another bilinear model and two nonlinear moving-average models. The latter type are rarely applied in
practice. For this reason, the focus will be on Blockl models.

The Threshold Autoregressive (TAR) model
Consider the following nonlinear model:

Y=oV + B (o)) + @B (yi-)) + iy, 4.1
where
_ 1 ,
E(y-) = A +exp{—y (-1 — )P~ — 5 Jj=1L2, y>0, a<aq. (4.2)
LWG simulated equation (4.1) with @y = 0.3 and @, = —a, = 1.2 when ¢, = —¢; = -1 and y = 00 in

equation (4.2). To study the performance of the tests, 1 linearize equation (4.1). An appropriate way of doing
this is to replace F; by a third-order Taylor expansion about y = 0, because equation (4.1) is linear when
y = 0.

The third-order Taylor expansion to F; is:

Tj(yf—l) = bi(y-1 — Cj) + 175()’14 - Cj)3 = ba,Vf_x - 31959‘)’12—1
+ Bbsc + by — bl + b)), j=1.2, (4.3)

where b = y/4 and by = y*/16. Assuming @, = —a, and ¢; = —¢, yields
{a T+ & L(y-Di- = ad i) — L-D1yia
= —6aibsc1y;_; — a1 (6bsC) — 2bycr) yry. (4.4)
Thus the corresponding approximation of equation (4.1) is of the form:
n=aya+day, + u, (4.5)

and the linearity hypothesis is Hj : a3 = 0. The fourth- and second-order terms theoretically present in
equation (4.4) vanish because both g, = —a; and ¢, = —¢,.

From equation (4.5) it is seen that the NN test has power dgamst equation (4.1), as its auxiliary regression
contains the crucial third-order term 3;_,. On the other hand, Y&, in TSAY1 is a very poor substitute for V..

Timo Terdsvirta 5



Assume equation (4.5) is the correct model, and equation (2.1) with gy = 0 and # = 2 is the inappropriate
alternative. Then

Ey; E.}’f—l E.V;_i‘l
T =Ekk = Ey_, Ey,
Ey.,

so that Xy = Ey,_, = 0, which implies Ty« = 0. Thus for any |a}| < 1, Ay(a], 8) = 0, so that the local
asymptotic power of TSAY1 against equation (4.5) is not higher than the size of the test. This explains the low
empirical power of the test.

Next I apply ARE to consider the performance of WHITE3. Assume again that equation (4.5) is the true
model. If I choose @ = 0.05 and 8 = 0.5, say, then the ARE of WHITE3 with respect to equation (4.5) is:

AREy (a1, 8,0.05,0.5) = 1.8964; (1 — a3), (4.6)
so that

max AREy (a, 8, 0.05, 0.5) = 0.474 at a; = £1/+/2,

Jen | <1

and ARE (0.3, 8, 0.05, 0.5) = 0.155. The computation of equation (4.6) (see the Appendix) shows that the
only term in WHITE3 based on equation (2.2) that contributes to the (Jlocal) power is the third-order term
Vi—1Yi—2,—1. The test thus may be expected to detect nonlinearity in equation (4.1) for a; = 0.3 because
equation (4.5) is a local approximation to (4.1) in the neighborhood of y = 0. However, for the present
parametrization, a much larger sample size than T = 200 is needed for that power to show. Note that the
RESET based on principal components is also without power, although the linear combinations serving as
regressors in the test do contain y;_,.

The Sign (SGN) model
The sign model of LWG is:
Yr=sgn(y-1) + g, Y, ~ nid(0, 1), (4.7)
where sgn(x) = 1, x > 0; sgn{x) =0, x = 0; sgn(x) = —1, x < 0.
Consider the generalization:
v = aFg(yi-1) + uy, (4.8)

where Fy;(y-1) = (1 + exp{—y 3D~ = 1, ¥ > 0. Choosing a = 2 and letting y — oo yields equation (4.7).
Note that equation (4.8) is a special case of the single hidden-layer feedforward artificial neural network
model (LWG; White, 1989) with a single hidden unit. The NN test of H; : a = 0 is therefore powerful by
definition. Replacing F;(y,-1) in equation (4.8) by its third-order Taylor approximation about y = 0 (linearity)
yields y, = by, + b3y, | + ;.

The arguments used above apply again. TSAY1 has little power because it lacks y; ;. In fact, its empirical
power in the experiments of LWG does not increase with the sample size. The ARE of the White test equals
zero for o = 0.05 and g = 0.5, which explains its lack of power. For comparison, RESET with principal
components is clearly now more powerful than in the previous design.

Bivariate models

The above considerations also help explain the simulation results for the two bivariate models. For the SQ
model y, = x7 + w;, TSAY1 is the best test. The regression version of the neural network test indicates that the
NN test of LWG is not as powerful, but may still have considerable power. Taking y; = ax;, + bx? + u, to be
the true model, it is easy to see that the asymptotic local power of WHITES3 is not higher than the size of the
test because gy = 0. This is because x; and u,_; are independent at any lag j. Nevertheless, the empirical
global power of WHITE3 is fairly high. This helps to put the performance of the BDS test into perspective. Its
empirical power is high, but no higher than that of a test whose ARE equals zero. However, a problem with
this test is that its size is not completely under control in small samples. This is because its asymptotic null

6  Power Properties of Lincarity Tests for Time Series



distribution depends on two nuisance parameters: the embedding dimension and the nearness parameter; see
for example Brock and Potter (1993). In fact, as to the SQ model, Table 8 in LWG is more informative than
Table 4. The differences in power one may expect appear more clearly when the error standard deviation

g = 20. TSAY1 is then the most powerful test, followed by the NN test. The power of WHITE3 is low.

The power of the linearity tests against the model EXP(y, = exp(x;) + u,) is best evaluated by
approximating the exponent by a Taylor expansion. This shows that TSAY and the NN test should be the most
powerful tests, and that both x? and x;’ are useful terms in the auxiliary regression. From Table 9 in LWG it is
seen that TSAY1 and the NN test have about the same empirical power. Assuming that the true model is
¥ = ax; + bx} + cx;i + 1, and selecting equation (2.2) with z; = x; to be the inappropriate one again gives
Zyy = 0. This leads one to expect WHITE3 to be clearly less powerful than the other two tests, which also
turns out to be the case.

Bilinear model
LWG simulated the (Block1) bilinear model

YV =aVi1 + Cyth— Y5 + Uy, u; ~ nid(0, 0%), (4.9

where i =2, j=1, a =0 and ¢; = 0.7. WHITE3 had the highest power. As seen from equation (2.2), its
auxiliary regression does not contain ,_,y,_1. To find out where the power comes from, I consider two
misspecified models based on WHITE3, both of type (4.9). The idea is to separately consider contributions of
different components to the power of the test in the WHITE3 equation (2.2). The first model has i = j =1
and ¢;; # 0, whereas the second one has 7 =1, j = 2 with ¢;> # 0. The ARE of the linearity test of ¢;; = 0 in
the first misspecified model when the data were generated by equation (4.9) is:

ARE;(a) = 4a*(1 — a®)*/{(1 + 24° — 24*)(3 — 24%))},
whereas that of the second inappropriate model equals
AREx(a) = (1 — a®)?*/(1 + 2a* - 24")

(see the Appendix). Now, ARE,(0) = 1, indicating that the component #,_;),_, in the White tests is important,
contributing power as a = 0 in equation (4.9). The McLeod-Li test also has high power, although its ARE
compared to the test based on the true model (4.9) equals zero. The low power of TSAY1 therefore requires
an explanation. It is sufficient to look at its ARE with respect to the test based on equation (4.9), which is:

AREry(a) = 3a’(1 — a®)/(1 + 2a* — 24") = 0,

for a = 0 (see the Appendix). On the other hand, TSAY2 is more powerful than TSAY1 although it contains
more regressors. This suggests that some of the additional lags introducing cross-terms in the auxiliary
regression of the Tsay test increase the power of the test. To investigate this, consider the following simple
artificial model:

Vi=aya+ oy, u~nid(0, 0?). (4.10)
The ARE of the test of ¢); = 0 in equation (4.10) compared to that of ¢;; = 0 in equation (4.9) equals
AREp(a) = (1 — a®)(1 + 2a>)/(1 + 2a* - 2a%),

so that ARE;(0) = 1. Thus, adding the second lag is likely to increase the power of the Tsay test substantially.
TSAY2 uses five lags, which reduces the power again because many of the terms in the auxiliary regression of
TSAY?2 are redundant if one tests ¢;; = 0 in equation (4.3). A larger sample size and/or more noise in
equation (4.9) would be needed to render TSAY2 more powerful than the McLeod-Li test. Note that the ARE
of TSAY1 is maximized at a = £1/4/2, and the maximum equals . Thus for |a| = 1/+/2, TSAY1 would be
clearly more powerful than the McLeod-Li test. The power of TSAY2 would decrease by increasing |g|
sufficiently as ARE¢(1) = 0.

The bilinear model constitutes an interesting example, because the McLeod and Li test with zero ARE
compared to the test based on equation (4.9) is quite powerful. The ARE is based on local considerations, and
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a test with zero ARE with respect to another test may still have plenty of power against a global alternative.
The ARE thus does not necessarily say much about the empirical power of a test in a given experiment. What
the ARE comparisons do is establish a ranking of tests in terms of power: for a given number of observations,
a test with a higher ARE with respect to another test is expected to have more power than one with a lower
ARE with respect to the same test.

This has implications for the design of simulation experiments. Assume that, in a pilot study, a test with
zero ARE has high power (say, 0.9). Then one knows that the experiment will not be very informative about
tests with higher ARE, because their power will only vary between 0.9 dnd unity. Suppose the experiment
includes a test whose ARE is difficult or impossible to determine, and whose power turns out to lie between
0.9 and unity as well. Then it is difficult to say much about the relative performance of the test, because a test
with zero ARE already is very powerful. In the present example, the BDS test is a case in point. It would be
useful to redesign the experiment in such a way that the power of the tests with zero ARE would not be too
high. This would allow more spread between powers of tests with zero ARE and those with high ARE, and
give a better indication of the power properties of tests with unknown ARE. The designs in Block2 (Model5
and Model6) are not ideal in this respect either.

The argument also works the other way around. Suppose that in a simulation experiment the tests with
high ARE have low empirical power. Then the tests with low ARE are even less powerful, and the results of
the experiment probably turn out not to be particularly informative if power comparisons between tests are
the main object of interest. To avoid that, and to ensure a sufficient amount of variation in the simulation
results, tests with high ARE should be designed to have fairly high power. Alternatively, to obtain interesting
information about power differences, the tests should be carried out at a sufficiently large number of sample
sizes.

Nonlinear Autoregressive (NLAR) model

A linearization of the model indicates that TSAY1, TSAY2, the NN test, and RESET may have power against
NLAR because their auxiliary regressions contain y? |. That of RESET also contains y; ,, albeit in linear
combinations with other powers of y,_;. That the regressors give power is seen from Table 4 in LWG.
However, TSAY2 has low power because it contains a large number of redundant regressors.

5 Final Remarks

I have shown that the simulation results in LWG can to a large extent be explained by linearizing some of the
models and applying the concept of ARE. The following conclusions emerge. First, the mediocre performance
of the TSAY1 against TAR and SGN models is due to the particular parametrization of these models. The
designs in LWG did not include a two-regime TAR model, against which the Tsay test usually has power; see
Luukkonen, Saikkonen, and Terisvirta (1988b) and Petruccelli (1990) for examples. Second, the results of LIWG
speak against the principal component RESET, not RESET as such. For Blockl models, the original RESET with
f2, and f7 | as regressors is almost the same as the NN test in Terdsvirta et al. (1993), and should therefore
have excellent power against the TAR and SGN models. Third, the design of the bilinear alternatives is not
informative enough for evaluating the relative performance of the BDS test. In general, whenever the BDS test
has high power, then at least one test with zero ARE with respect to the test based on the correct alternative
also is quite powerful. The power of several tests against bilinearity crucially depends on the coefficient of
-1, which equals zero in all simulations of LWG. Luukkonen et al. (1988a) have made a similar point.

Finally, an LM or LM-type test against the appropriate alternative would be a useful addition to any Monte
Carlo design. This is because it gives an upper bound to the empirical power for that particular design, and
thus helps to better assess the relative performance of the other tests. In some cases LWG have already
included it: an example is TSAY1 in the SQ model.

References

Brock, W.A. and S.M. Potter (1993), “Nonlinear Time Series and Macroeconometrics.” In: G.S. Maddala, C.R. Rao, and
H.D. Vinod, eds., Handbook of Statistics, vol. 11. Amsterdam: North-Holland, pp. 195-229.

Granger, C.W.J. and T. Terisvirta (1993), Modelling Nonlinear Economic Relationships. Oxford: Oxford University Press.

Keenan, D.M. (1983), “A Tukey Nonadditive Type Test for Time Series Nonlinearity,” Biometrika 72, 39-44.

8  Power Properties of Linearity Tests for Time Series



Lee. T-H., H. White, and C.WJ. Granger (1993), “Testing for Neglected Non-Linearity in Time Series Models. A Comparison of
Neural Network Methods and Aliernative Tests,” Journal of Econometrics 56, 269-290.

Luukkonen, R., P. Saikkonen, and T. Terisvirta (1988a), “Testing Linearity in Univariate Time Series Models,” Scandinavian
Journal of Statistics 15, 161-175.

Luukkonen, R., P. Saikkonen, and T. Terisvirta (1988b), “Testing Linearity against Smooth Transition Autoregressive Models,”
Biometrika 75, 491-499.

Pearson, ES. and H.O. Hartley. eds. (1972), Biometrika Tables for Statisticians, vol. 2. Cambridge: Syndics of the Cambridge
University Press.

Petruceelli, J. (1990). "A Comparison of Tests for SETAR-Type Non-Linearity in Time Series,” Journal of Forecasting 9, 25—36.

Ramsey, I.B. (1969), “Tests for Specification Errors in Classical Linear Least-Squares Regression Analysis,” Journal of the Royal
Statistical Society, B, 31, 350-371.

Saikkonen, P. (1989), “Asymptotic Relative Efficiency of the Classical Test Statistics under Misspecification,” Journal of
Econometrics 42, 351-369.

Terisvirta, T., C.-F. Lin, and C.W.J. Granger (1993), “Power of the Neural Network Linearity Test,” Journal of Time Series
Analysis 14, 209-220.

Tsay, H. (1986), “Non-Linearity Tests for Time Series,” Biometrika 73, 461-466.

White, H. (1987), “Specification Testing in Dynamic Models.” In: T.F. Bewley, ed., Advances in Econometrics, Fifth World
Congress of the Econometric Society, vol. 1. Cambridge: Cambridge University Press, pp. 1-58.

White, H. (1989), “Some Asymptotic Results for Learning in Single Hidden-Layer Feedforward Network Models,” journal of
the American Statistical Association 84, 1003-1013.

Appendix: Computing Asymptotic Relative Efficiency

Al. True model y, = ay; 1 + ca1ty_2y,_1, the inappropriate model y; = ay,_| + u, + Yu 1y

In all these cases, 02 may be regarded as known because the information matrix of o2 and the remaining
parameters is block diagonal such that one block contains a2 and the other the rest of the variables. Then the
components of & are:

dpla,0)/da = —o iy, (A.D
81_71(617 0/oy = —(7»2[0[4/—1%*1 (A.2)
api(a, 0)/3¢p = —a %y, W2 Y-1 (A.3)
where &4, = y, — ay,_,. Then r = s = 1, Y, = 0y is a scalar, and
Oua Ouy Oap 0)2' 0 0
= Opy Oyp | =072 0%0}(3 - 24%) 2a0"
Oy 020‘12,(1 +2a® - 2a%)

where o' = By} = 0°/(1 = a®). Thus yy., = 64y and 044, = 0y, 50 that AREy (@) = 0, ,/0yy 04y =
4’ (1 — a®)/{(3 — 2a*)(1 + 2a% — 2a*)}.

A2. True model y; = ay,_1 + c11;_; Ye-1/ the inappropriate model the auxiliary regression of TSAY1
The auxiliary regression of TSAY1 is:
Y= ay+ @y, + u.

Then equations (A.1) and (A.3) remain unchanged, but equation (A.2) is replaced by
dpia, 0)/3y = —o~2i,y} | It follows that

g 0 0
Y = 4o 2 30 3ac’c?}
00;(1+2a* — 2da")

which leads to AREy () = 3a*(1 — a®)/(1 + 2a* — 2a").
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A3. True model y, =a;y,_1 + a3 y?_l + u,,; the inappropriate model equation (A.4}
The inappropriate model is based on WHITE3, and can be written as:

V=iV + WY Ryt sVt + ViV Yot (A.4)

where u, ~ nid(0, o%). This yields 6*Z,, = of,, 02T = 30}‘?, 02 Tpp = 150}(7, and

0’22¢¢.a = 60‘6 (AS)
Furthermore,
o’ 0 0 a0’o;
- 3%+ ajo’ol o’} 0
o° = - :
124 0203 0
30203

0Ty = (67,0,0,2a410%0)), 0’4y = (36%,61,0,0,12a10%3))
0 Zgya = 0 (Zpy — TpaZ s Zay) = (0,0,0,6a10°%07}).

ad

Thus the only term that contributes to the asymptotic local power of WHITE3 in this case is y—; -2 1.
Straightforward computation shows that the southeast corner element of 672, equals (2020f)_1, so that

Ay (a1, 8) = 8'Toy.alyy ,Tyh.ad = 18ai0,07.
Using equation (A.5), one obtains Ay (a4, §) = 60‘20382, so that Ay (a1, 8)/Ag(an, 8) = 3ai(1 — aj) and

ARE, (8, a1, @, B) = 3a;(1 — apld(1, a, B)/d(4, o, B)}.
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Abstract.  This paper surveys the literature on cyclical and chaotic equilibrium paths in deterministic
optimal growth models with infinitely lived agents. We focus on discrete time models but also briefly mention
results for continuous time models. We start by reviewing those results that bave been proved for optimal growth
models in reduced form. Then we discuss results for two-sector optimal growth models in primitive form.
Finally, we summarize a few results that have been obtained for other variants of the model, including models
with recursive preferences and models with beterogeneous agents.
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1 Introduction

Both the interest and the research activity in economic growth theory has increased dramatically during the
last decade. One can explain this development in at least two different ways, namely, (i) that the models
studied in the recent endogenous growth literature are capable of explaining long-run growth and
technological advancement in a more convincing way than the models from 20 or 30 years ago, and (ii) that
new mathematical concepts and methods have been developed that allow us to study growth models with
dynamically complicated optimal paths or equilibrium paths. In this article we try to survey a number of new
results for optimal growth models with infinitely lived households, which can be attributed to fact (ii) from
above.! Particular emphasis will be put on results that are concerned with cyclical and chaotic optimal growth
paths.

The importance of the theory of nonlinear dynamical systems for the study of economic processes has
already been noted by many authors. Nonlinear dynamics are ubiquitous in economics, and the reader is
referred to the following survey articles or books to get an impression of how much work has been done in

LA recent and comprehensive survey of developments triggered by fact (i) can be found in Barro and Sala-i-Martin (19953).
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this area over the last couple of years: Benhabib and Baumol (1989), Boldrin and Woodford (1990), Brock
(1993), Brock and Dechert (1991). Brock and Malliaris (1989), Chiarella (1990), Day (1994), Frank and Stengos
(1988), Lorenz (1989), Medio (1993), and Scheinkman (1990). Although models from almost any field in
economics have been analyzed by methods from nonlinear dynamical systems theory, optimal growth theory
is probably the one field that has received the most attention. This is not surprising, since one of the main
objectives of growth theory is the explanation of the fluctuations of economic variables around their general
upward trends. For the purpose of this explanation, endogenous cycles and chaos seem to be at least as
appropriate as the exogenous shocks commonly used in real business-cycle theory.?

The two most commonly considered paradigms in the theory of economic growth are the overlapping
generations model going back to Samuelson (1958) and Diamond (1965), and the model with infinitely lived
households originating from Ramsey (1928). In this survey we exclusively consider models of the second
variety.® Among the models using infinitely lived agents we can again distinguish between those that use a
continuous-time framework and those that use discrete time periods. This distinction is not innocuous for the
subject of the survey, because it is well known that complicated dynamics can arise more easily in
low-dimensional systems of difference equations than in corresponding systems of differential equations. We
shall focus our attention on discrete time models and mention possible generalizations or extensions to the
continuous-time framework only briefly in Section 4.3.

Most of the results on cycles and chaos in economic growth theory deal with models in which the
dynamics can be reduced to a one-dimensional difference equation. This emphasis on one-dimensional
dynamics is also reflected in the present survey. It seems, therefore, worthwhile to point out those results that
deal with higher dimensional dynamical systems. The general possibility theorem (Theorem 2.2) from Boldrin
and Montrucchio (1986) and the result on topological entropy (Theorem 2.3) from Montrucchio and Sorger
(1996) hold for state spaces of arbitrary (finite) dimension, and some of the heterogeneous agent models
discussed in Section 4.1 lead to two-dimensional difference equations. As will be discussed in Section 4.3, one
also needs higher dimensional state spaces to generate cycles and chaos in continuous-time models.

The general outline of the paper is as follows. In Section 2 we discuss results for models in reduced form.
These models do not contain any control variables such as consumption rates or investment rates, but are
stated in state variables (capital stocks) only. The advantage of the reduced form is that it has a simpler
mathematical structure than nonreduced models, and is therefore more amenable to a clear-cut
characterization of those properties that generate cycles and chaos. We start with definitions and basic
properties of reduced utility function models in Section 2.1, discuss optimal cycles in Section 2.2, and optimal
chaos in Section 2.3. Section 2.4 studies the influence of the rate of depreciation on the structure of optimal
growth paths, whereas Section 2.5 analyzes the relationship between the size of the discount factor and the
occurrence of complicated dynamics. Section 3 deals with nonreduced models. Since cycles and chaos cannot
occur in the standard one-sector model (see Dechert and Nishimura [1983] and Dechert [1984]), a nonreduced
optimal growth model that can generate complicated dynamics must have at least two production sectors. The
existing literature on cyclical or chaotic optimal growth has focused almost entirely on the simplest such case,
which is the case of a two-sector model, and we follow this tradition. We introduce the basic framework in
Section 3.1, discuss optimal cycles in Section 3.2, and chaos in Section 3.3. Section 4 summarizes results for
models that did not fit easily into Sections 2 or 3. More specifically, these are models with heterogeneous
agents (Section 4.1), models with nonadditive utility functions (Section 4.2), and continuous-time models
(Section 4.3). Finally, Section 5 presents some concluding remarks.

2 Reduced-Form Utility Function Models

2.1 Definitions and assumptions

Reduced-form utility function models have been used by many authors because of their simple mathematical
structure and their wide applicability in economics. For a comprehensive survey of methods for and
applications of such models, we refer to McKenzie (1986) and Stokey and Lucas (1989). In this subsection we
briefly summarize the definitions and results that are needed in the remainder of the paper.

=See Stadler (1994) for a recent survey of real business-cycle theory.
3The occurrence of chaos and cycles in models with overlapping generations of finitely lived agents has been discussed, for example, in
Grandmont (1985).
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