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Preface

Fracture mechanics has become an indispensable tool in a number of important
technical areas for the design and safe operation of damage-tolerant structures,
and the development and use of advanced materials. One of the essential in-
gredients in fracture mechanics based analysis is the stress intensity factor, the
characterizing parameter for the crack tip field in a linear elastic material. The
determination of stress intensity factors for cracked members has therefore been
the subjects of intensive research and work in fracture mechanics during the past
three decades.

The weight function method is a very powerful and cost-effective method for
the evaluation of stress intensity factors and crack opening displacements, thus
greatly facilitating the application of fracture mechanics. Compared with most
current analytical and numerical methods, it has distinct advantages: it features
versatility, efficiency, reliability and is easy to use. The method is especially at-
tractive when a large number of stress intensity factors are desired for multiple
load conditions. This book reflects the authors’ research in this particular area
in recent years. It attempts to systematically present the weight function method
for two-dimensional crack problems in a unified manner using closed form analy-
sis. A very large number of stress intensity factors are given, all of which have
been generated by the authors using the analytical weight functions in the book.
Every effort has been made to ensure that the solutions are reliable.

The book can be divided into three parts: Part I (Chapter 1) gives the theor-
etical background and overview of the weight function method. Part IT (Chapter
2 through 16) constitutes the bulk portion of the book, giving details of the
weight functions for various geometries and a large number of stress intensity
factor solutions in graphical and/or tabular form; center crack(s) are treated in
Chapters 2 to 4, edge cracks in Chapters 5 to 16. Part III (Chapter 17) deals
with the determination of crack opening displacements, Dugdale model solutions
and crack opening areas.
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xii Preface

The book is primarily intended to serve as a useful reference for researchers and
engineers concerned with fracture and fatigue of materials and structures. The
reader is expected to have basic knowledge of fracture mechanics.

The authors wish to express their gratitude to many of their colleagues in
various organizations, who have helped and assisted in the production of the
manuscript by providing excellent working conditions, making good suggestions
on the presentation style, spending their valuable time on reading and com-
menting for the improvement of the book. The final assembling of the material
and the camera-ready typescript were completed during one of the authors’
(X R Wu) academic visit to the Royal Institute of Technology, Stockholm; he
gratefully acknowledges the support of both his host and home organization.
Finally, we thank our families for the continued encouragement and support
throughout the work.

X.R. Wu and A.J. Carlsson
Stockholm, April 1991



User Guide

The aim of this book is twofold: the first being to provide a theoretical back-
ground of the weight function method for analysis of two dimensional crack prob-
lems based on analytical approaches; the second being to present a large number
of stress intensity factors (K 1) as well as closed form weight functions for various
crack geometries of practical significance.

Throughout the book, the analysis has been carried out in terms of norma-
lized quantities; the normalization is necessary in order to avoid lengthy expres-
sions. For this purpose some of the notations do not follow the customary ones:
all the real length dimensions are denoted by capitals, e.g. the crack length by 4,
the coordinate by X and the crack opening displacement by U. For each crack
geometry a characteristic length dimension, W, is chosen for normalization. The
most frequently used normalized quantities are

a=A/W x=X/W u=U/W 1)
In most cases the stress intensity factors are written in the form
K = fo JmaW 2)

where f is the non-dimensional stress intensity factor and ¢ is a normalizing
stress which can be chosen freely as long as consistency is kept throughout the
analysis. This o is not to be confused with the crackline stress distribution de-
noted by o(x).

Because f is a function of the normalized crack length a, it is more conveni-
ent to work with the normalized geometry in which W is set to be unity, as shown
in the first figure in all the chapters from 2 to 16. In most of the insets of the
f-plots this W has been put equal to 1. The real dimension W, however, must be
used when calculating K according to e.g. eq (2).

For users’ convenience, the same structural form has been adopted for the
chapters concerned with stress intensity factors (Chapter 2 to 16). These chap-
ters are independent of one another and each chapter consists of three sections:
1. Determination of weight function(s), 2 Stress intensity factors for basic load
cases, 3. Application examples containing K-solutions to various load cases.

The use of the book, however, is not restricted to the given examples. The
possibility of generating f-solutions for new load cases is unlimited. In most
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Xiv User guide

cases, solutions can be easily obtained without resorting to numerical integration.
In this regard, the reader will find the basic solutions very useful.

The weight function method is to be used in conjunction with the superposi-
tion principle in linear elastic fracture mechanics. When using the weight func-
tions and the basic solutions in this book, the first step is to determine o(X)
(frequently referred to as crackline stress or crack face pressure/loading) along
the prospective crack line in the body without the crack. Because of the absence
of the crack, o(X) can be easily obtained by conventional analytical or numerical
methods. This o(X) must then be transformed to o(x) using the normalized coor-
dinate x. Depending on the nature of the crackline stress the corresponding f
can be evaluated using various options.

* For most cases of continuously distributed crack face loadings, f can be readily
determined by superposition of the fn-solutions in the relevant chapter. To this
end, the crackline stress o(x) is first expressed, by least square fit, in polynomial
form:
N
ox)=1X S, L, x>0 3)
n=0

(It is important to note that to use the [,-solutions, the stress over the entire crack
length a in consideration must be represented by a single polynomial.)

The non-dimensional stress intensity factor f is then determined by the
simple arithmetic:

N
1=% 5,1, @
¢ If o(x) is not amenable to polynomial representation because of its discontinu-
ities or strong variations, then the piecewise linearization method can be used.
The o(x)-distribution (0 < x < a) is discretized into linear segments, and the resul-
tant f is obtained by summation of the contribution from each linear segment.

The weight function method itself is exact. The main sources of error in the
determination of stress intensity factors are: the accuracy in the reference sol-
utions and the number of terms contained in the weight function. For each crack
geometry, the accuracy of the weight functions presented in this book has been
examined carefully in the given range of the non-dimensional crack lengtha. An
important advantage of the weight function method is that stress intensity factors
are obtained through integration, an operation usually reducing the possible
€rrors.
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1

Theoretical Background
and Overview

1.1 Introduction

Fracture mechanics, being one of the most active research areas in the field of
solid mechanics since the middle of the 1950’s, has developed into an important
branch of applied mechanics. The rapid development of fracture research has
mainly been driven by the technological need for ensuring structural safety and
for developing new advanced materials. Today the use of fracture mechanics
and damage-tolerance analysis is almost imperative in areas where structural
failure could endanger human lives or lead to major economic losses. Among
others, aircraft/aerospace, nuclear energy/power generation, off-shore and trans-
port are the notable industry sectors where fracture mechanics is extensively used
as the theoretical basis for the development of fracture control plans, design
codes and inspection regulations. These activities ensure that operational safety
and structural integrity are adequately maintained during the expected life span.

Fracture mechanics focuses its attention on assessing, in a quantitative man-
ner, the behavior of cracks or cracklike defects in materials and structural com-
ponents, which may be introduced during the material processing and fabrication
or in service by damage due to e.g. overloading, fatigue or environmental effects.
At present there are still a multiple number of very important issues yet to be
solved in this field, such as elastic-plastic, dynamic and high temperature prob-
lems. However, linear elastic fracture mechanics (LEFM) is now well estab-
lished, and it is the part of fracture mechanics which has been most widely used
in the industry.



2 1. Theoretical background and overview
1.1.1 Linear elastic fracture mechanics and the stress intensity factor

Compared to many other branches of solid mechanics, fracture mechanics has a
relatively short history. Although early attempts were made in the 1920’s to
understand brittle fracture using energy methods, intensive studies and subse-
quent widespread applications of fracture theory had not taken place until the
mid-1950’s when the concept of stress intensity factor K was first introduced, and
the relation between the crack tip field parameter K and the energy release rate
G established by the classical work of Irwin [1.1] and Williams [1.2]. A survey
paper by Paris and Sih [1.3] has summarized the principal results from earlier
studies of linear elastic analysis of the crack tip fields.

Crack tip fields can be divided into three basic types, each associated with a
local mode of deformation, Fig. 1.1. The mode of deformation is characterized
by the direction of the potential motion of the crack surfaces in relation to the
original crack plane, Fig. 1.1; they are:

Mode I: in-plane opening causing normal separation of the crack faces;

Mode II: in-plane shearing leading to relative in-plane sliding of the crack faces
perpendicular to the crack front;

Mode III: antiplane shearing leading to relative out-of-plane sliding of the crack
faces parallel to the crack front.

Fig. 12. Coordinate system and crack tip stress components.



1. Theoretical background and overview 3

The crack tip (r- 0) stress and displacement fields, in a rectangular coordinate

system are, Fig. 1.2

Mode It
K
Y | 0[ 0 30]
= —> €085 | 1 —siny sin- | + o + O
x 5 2 n 2 0
o :L §[1+singsin379]+0(ﬁ)
w2

K,
6
r =—L cos¥sind cos>l +O(ﬂ
P 2“2 2

T =

= =0; 0, = 0 (plane stress), o, =V (au + aw) (plane strain)

‘ﬁ\‘

u=[K( 2—%) %/ (4u)] [(ch— l)cosz—cosg—e] + O(r)

v =K (55)%/ (4u)] [(2,; + 1)sind - sin%"] +0()
- ﬁ f (axx + UW) dz (plane stress), w = 0 (plane strain) (1.1

Mode II:
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K
—__ I 4
o smz [2 + cosy cos> ] + O(yr)

K
.6 0 30
0 = —— §inx COSx COS5- + O(Vr
= g 2 €057 057+ OGN
T :—Kﬂcosg[l—si 0sin39] + O(r)
0= 02 ny siny
e =T, =0 0,=0 (plane stress), o =v(o_+ U»,) (plane strain)

u=[K 1(271.)7/(%)] [(2ﬁ+3) Sln2+51 30] + O(r)
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- g f (axx + o)y) dz (plane stress), w =0 (plane strain) (12)
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4 1. Theoretical background and overview

K
T = —!—Ilcos§+ o\
2 2w

o =0 =0 _=71_=0

w=v=0w=[K, (Z)E/u]sind + O() (13)

where the subscripts 1, 11, and /I denote the mode of loading, y is the shear
modulus, k¥ = (3 - v)/(1 + v) for plane stress and £ = 3 — 4 for plane strain,
with v being Poisson’s ratio.

Two features are evident from the field equations (1.1-1.3):

i: For any given mode of deformation, the angular dependence of the crack
tip stresses and that of displacements are universal, i. e. the #-distributions of the
crack tip field quantities are functions of the deformation mode only.

ii: The crack tip stresses all contain a 1/yr singularity whose intensity is
determined by a single parameter, the stress intensity factor K. All other aspects
of loading and geometry including the crack size can only affect the behavior of
the cracked body through the stress intensity factors.

The singular stress is the first and the dominating term in a power series
expansion of the stress field around the crack tip [1.2]. We note that for mode I
loading, there is a second constant term o 0 in 7, This non-zero component is
parallel to the crack plane and is often referred to as the T-stress. The T-stress
is geometry dependent and has been given by Larsson and Carlsson for some
specimen geometries [1.4].

The singular stress distribution at the crack tip is obviously a result of the
mathematical idealization that the crack is infinitely sharp and the material is
linearly elastic everywhere. In reality, the stresses in the vicinity of the crack tip
will be relieved by plastic flow, or other non-linear deformation. However,
under the condition of small scale yielding [1.5], meaning that yielding is confined
in a region small compared to the crack length and other body dimensions, the
corresponding stress distributions surrounding this small inelastic zone are still
adequately described by the dominant singular term in the elastic solution and its
coefficient, the stress intensity factor K. Therefore the stress intensity factor
provides a one-parameter characterization of the crack tip field in a linear elastic
body, provided certain geometrical requirements are met [1.6]. (Note that the
T-stress mentioned above has an influence on the plastic deformation at the
crack tip, thereby limiting the validity of LEFM as has been pointed out by
Larsson and Carlsson [1.4], and Rice [1.7]. It was also shown that the 7-stress
effect on other crack tip parameters, such as the crack opening displacement and



