 NUCLEAR -

PHOTO-DISINTEGRATION
BY

~1.S. LEVINGER




NUCLEAR
PHOTO-DISINTEGRATION

BY _/
J. S. LEVINGER

PROFESSOR OF PHYSICS, LOUISIANA STATE UNIVERSITY

OXFORD UNIVERSITY PRESS
. 1960




PREFACE

‘MY research werk on nuclear photo-dmmtegratxon sbarted in -
-.1949 at Cornell University with H. A. Bethe, and also P.
Morrison. In the summer of 1956, I gave a series of lectures
on ‘“Electromagnetic Interactions with Nuclei” at the Univer-
sity of Mexico. The lecture notes prepared by M. L. Rustgi and
‘ L. Estrada formed the nucleus of the manuscript for this
t _-book; while vigorous discussions with physicists there greatly

~ _ clarified my point of view concerning nuclear models.

The bulk of the writing of the manuscript was done while I
. wag a Guggenheim Fellow working, K at the University of
' Birmingham. My main emphasis in this work on the nuclear

.- photoeffect, and in the manuscript, now became a critical
‘i analysis of various nuclear models used for these calculations,
‘ . and consideration of the relations among various nuclear

‘models.. The penetrating discussions with Prof. Peierls, and
many others of the Department of Mathematical Physics,
‘proved highly illuminating.
- I also wish to thank many physicists for tellmg me of their
theoretlcal or expeérimental results prior to publication, and
for deta.ﬂed discussions concerning their work. Prof. D. H.
Wilkinson provided very many constructive criticisms after
L " reading my Birmingham draft of the manuscript. I am also
: grateful to G. E. Brown, J. Dabrowski, A. M. Lane, and
(. G. Shute for their criticisms of this draft. Finally, I wish
to thank M. Razavy, O. Rojo,.and my wife for their help in
_ the preparation of figures, and in,proof reading. :

J.S. L.

- . LouvisiaNA Srare UNIVERSITY
g October 1959
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 CHAPTER I

INTERACTIONS BETWEEN CHARGED
PARTICLES AND RADIATION

1.1. Infroduction

Ix our discussion of the theory of nuclear photo-disintegration
we will be guided, as-far as possible, by analogies to the atomic
- photo-effect. We therefore spend the next five sections in a
survey of methods for calculating the atomic photo-effect.
" The last three sections give an introduction to theoretical and
experimental work on the nuclear photo-effect. As there is a
- high density of equations in this survey, we shall in this seotion
attempt to give a physical interpretation of the major results

derived below.

- In cases where the analogy to the atomic photo-effect fails,
we have recoursé to a phenomenological approach to nuclear
physics. That is, we try to interpret nuclear phenomena at
moderate energies (say less than 100 MeV excitation) in terms
of non-relativistic wave functions involving only nucleon
coordinates. We attempt to avoid discussion of mesonic
effects although they are certainly of importance at high
energies.

We have not a.ttempted a complete survey either of theoretical
or of experimental work. Our use of experimental data in
tables or figures is for illustrative purposes only. (See Toms
(197] for a bibliography of the literature; Bishop and Wilson
[27] for experimental data; and Sachs [176] and Blatt and
‘Weisakopf [28] for theoretical material.)

There are three reasonable approaches to the caloulation of
transition probabilities for the atomic photo-affect: the
original Heisenberg approach of postulating the transition
probability in terms of matrix elements; the perturbation-
theoretic approach in which the electromagnetic field is treated
classically; and the approach of quantum electrodynamios
[98). We have chosen the second approach as not too advanced,
and yet rigorous enough for our purposes.
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Conslder the case of absorption of electromagnetic energy in
which an atom is excited from the ground to a higher discrete
state. In section 1.2 we calculate the transition probability
integrated over the absorption line. Alternatively this inte-
grated transition probability can be expressed as an absorption
cross section integrated over the line, or as an oscillator strength.
If the atom is originally in the higher discrete state, we are con-
cerned with the transition rate for spontaneous photon emission,
which is proportional to the oscillator strength. In the photo-
effect the atom is excited from a discrete to a continuum state.
In this case we consider either the oscillator density or the
related absorption cross section.

In section 1.3 we justify our use of the oscillator strength
(or density) by analogies with three different classical calcula-
tions of the interaction of electromagnetic waves with a charged
oscillator: the integrated power absorption, Thomson soatter-
ing, and the pola,nzabﬂlty

We then apply “sum-rules” to calculate various statistical
moments of the oscillator strength distribution and correspond-
ing mean energies. These sum-rules all use the closure property
of matrix mechanics: >,4,,B,, = (4B)y,, where 4 and B are
any two matrices and we sum over all excited (discrete or
continuum) states ». These sum-rules prove useful, because
" the answer is expressed using only expeotation values for the
ground (0) state.” Thus sum-rule calculations can clarify to
what extent a result derived from some particular médel is
peouliar to that model, or on the other hand may be model-
independent. For example, two different models that use the
same wave function for the ground state but different wave
functions for excited states will give identical sum-rule results.

It may seem surprising that the properties of the ground
state alone are sufficient for sum-rule calculations which deter-
mine the major properties of the photo-effect cross section [130].
We can understand this result from the Schrddinger equation.
The ground state wave function determines the Hamiltonian
for which it is the lowest eigenfunction. This Hamiltonian in
turn determines the wave functions of all excited states, and
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hence all matrix elements needed for a complete calculation of
the oscillator strengths for all energies. While this argument is
rigorous in the atomic case (non-relativistic approximation) it
must be modified in the nuclear case, since the nuclear Hamil-
tonian is different for different states of the nuclear system.
(For instance, the Majorana exchange force has a different sign
in the ground state of the deuteron than in the excited state
reached by photon absorption.) It turns out that we can modify
our sum-rules to account for the state-dependence of the Hamil-
tonian, and again express our answer in terms of the ground
state expectation value bf a more complex expression than that

" used in the atomioc case.

In section 1.5 we give an introduction to the muitipole
expansion of the electromagnetic field, and the selection rules
for the various multipoles.. In the non-relativistic limit (photon
energy much smaller than the mass energy mc? of the particles
congidered) the electric field is almost constant over the atom.
This electric dipole (£1) approximation is made in most of our
caloulations. The E1 approximation selects out from the
photon field the part that contains one unit of angular momen-
tum and odd parity: hence the selection rule that the atomiec
system must change its angular momentum by one unit (in the
sense of the vector model for addition of angular momenta) and
must change its parity. Other multipoles select out other
angular momenta and parity. For example, the magnetic
dipole term has one unit of angular momentum and even parity,
while the electric quadrupole term has two units of angular
momentum and even parity. Magnetic dipole and -electrie
qusadrupole have similar orders of magnitude for their transition
rates, and are each forbidden transitions with transition rates

. small compared to the allowed E1 transitions.

The nuclear photo-effect differs from the atomic photo-effect
sinoe protons and neutrons have essentially equal masses. We
are concerned with the nuclear dipole moment caused by
proton displacements. We separate this dipole moment into
one part due to the motion of the centre of mass of the entire
nuoleus, and a second part due to displacements relative to the
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centre of mass. We rewrite the second part, which is responsible
for photon absorption, in terms of both proton and neutron
coordinates, thus introducing the ‘‘effective charges” of
(V/A)e for protons and —(Z/A)e for neutrons.

The nuclear photo-effect presents a fundamental problem, due
to the exchange forces among the nucleons. These exchange
forces create an ambiguity as to the relevant operator for

interaction of the protons with the electromagnetic field. This -

ambiguity is resolved by Siegert’s theorem, which states that
(for E1 transitions) we should consider the interaction of the
dipole moment caused by point-protons with the electric. field.
Meson ourrents exist in a nucleus; but it should be possible to
specify the charge density in a nucleus without explicit reference

to mesons. We express the E1 interaction in terms of the .
charge density, thus giving a phenomenological derivation of

.Siegert’s theorem.

,The -theoretical integrated cross section for nuclear photo-
dmmtegmtlon is increased above the “classical value” of 0-060
(NZ/A) MeV-barns. This increase was first calculated intro-
ducing an attractive neutron-proton exchange force in the
nuclear Hamiltonian. It has been re-interpreted in terms of the
velocity-dependence of the nuclear shell-model potential. A
third interpretation of the increase in the integrated cross
section is given using dispersion theory, in which the cross
section for the nuclear photo-effect, integrated up to the
threshold for meson production, is expressed in terms of the
difference of relevant integrated photo-meson cross sections.
The relations among these three approaches are not yet

known. To relate the first and second approaches we need a

theory deriving the nuclear shell-model potential from the

two-body nuclear force. To relate the first and third, we need.

a.theory deriving the two-body nucleon force from a meson
theory.

In the last section of this chapter we give a summary of
expenmental techniques, difficulties, and results in measure-

ments of nuclear photo-disintegration.
In Chapter II we dmcuss experimental data a,nd theoretical

A
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caloulations on the deuteron photo-effect. The good agreement
found at present between experiment and theory gives us some
confidence that we know both the wave functions (for a nucleon
force with repulsive core and spin-orbit potential) and the
operator for the nucleon’s intergction with the electromagnetic
field. Above about 150.MeV photon energy, explicit mesonic
effects are of importance; but mesonic effects seem to be of
minor importance below about 100 MeV.

In the next chapter we use sum-rules for calculations of
various statistical moments and mean energies for the nuclear
photo-effect. We find that the general features of the nucloar

- photo-effect are insensitive to the model assumed for the

nuclear ground state, and are in fair agreement with experiment.

In Chapter IV we discuss briefly discrete transitions in the
nuclear photo-effect, paying special attention to £1 transitions:
We find rough agreement between shell-model estimates and
experimental data on transition probabilities. :

In Chapter V we consider the three principal models proposed
for the nuclear photo-effect: the shell model, the collective
model, and for high energies the quasi-deuteron model. We
conclude that neither the shell or collective model is literally
correct. Either model can be used to calculate the absorption
cross section as a function of photon energy; but the main
characteristios of the nuclear photo-effect are already given by
model-insensitive sum-rules. However, the models have been
of tremendons psychological help, in that they give a physical
feeling for the problem. This physical feeling is absent in the
sum-rule approach. Further work is needed fo combine the high
energy quasi-deuteron model with either the shell or collective
model valid for moderate energies. )

In the final chapter we discuss calculations and experiments
on the products of nuclear photo-disintegration: the branching
ratios for emission of various particles, their energy speoctra,
and their angular distributions. We find that the probable
reactions are in general accord with the statistical model for
decay of the compound nucleus. Deviations from the statistical
model can be explained in terms of resonance direct emission.



6. . BASIC THEORY 1, §1.1

At high energies neutron—protoﬁ coincidences are in good agree-
ment with the predictions of the quasi-deuteron model.

1.2. The oscillator strength

If a quantum-mechanical system, originally in its ground
state, 0, is perturbed for a time ¢, then the probability |C,|?
of finding the system in & discrete state n is given by time-
dependent perturbation theory [151] as

1
% - 2
|Ca®)]* = [_ %f et [H'(r, €)]on dt" | - (L1)
0
Here H' is the perturbation in the Hamiltonian, the subscripts
0 and n denote the matrix element between stationary states,
and the angular frequency w,, is given by the Planck relation

Won = (En_EO)/ﬁ’ (1.2)

In the electric dipole (1) approximation, the perturbation
H’ is due to a spatially constant electric field along the z axis
of amplitude &, and angular frequency w. We shall consider the
perturbation due to the electric field interacting with a single
particle of charge e:

[H'(r, ¥')]on = —€[2]on CO8 ¥, - (L3)
Substltutmg in equation 1.1 and carrying out the integra-
tion over dt', we find

_ 8in? (w0 —wg,)t[2 , 8in? (0+wy,)t[2
[G.(t)lh.ewf*(zo,,)z[ ha(w_w::), + o +w;)2 ] (1.4)

We find a sharp resonance at the Planck-Bohr condition
@ = wy, = (E,—Ey)[k. In order to obtain an expression for
the probability that varies monotonically with #, we integrate
over @ for a small range of frequencies around w,, and obtain -

[le.opdo = corenr 2 (1.5)

The transition rate |C,|%/t is independent of ¢, as expected.
The cross section o for photon absorption is defined as
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o = (transitions/sec)/photon flux. The cross section integrated
over the absorption line

(transitions/sec) dw

line

odo = photon flux

lne

4% W (2,)?
LA .
_ R v (176)
We have used photon energy W = %w, and photon flux =
c&3[8xW. '

We now introduce the definition of the oscillator strength

fos for E1 transitions between discrete states:

2
f()n

(Here 44, is the xeddced de Broglie wavelength for a particle of
energy W, i.e., 4 = Efmomentum.) Equation 1.6 is rewritten
as

mW 5 (200) = (zOn/ﬁOn) | (1.7)

2T o (1.8)

faw aW =
line -
For transitions to continuum states we remove the integ~al
sign in equation 1.8, and introduce the absorption cross section
.o(W) and the oscillator density df/dW :
o(Wy = (2n%®i/me) df[dW . (1.9)
We can also calculate the transition probability I',% ic
spontaneous photon emission from discrete excited state n
(degeneracy g,) to ground state 0 (degeneracy g,) using the
principle of detailed balance:

2ew

5 (909 on- - L (L

Equatxon 1.10 gives the relatlve width I‘,/ W for spontaneous
~ emission as

Ty =

I,/W = 5 T Fon2aola (111

Thus radiation broadening leaves speétrum lines very sharp:
e¥fhc < 1, in general W < me?, and f,, < 1. S
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As we can see from equation 1.7, f,, is & dimensionless quan-
tity. Its order of magnitude is unity for strong electric dipole
transitions, since f,, obeys the Thomas-Reiche-Kuhn (TRK)
sum-rule [25]

Sofon=1. (1.12)

This equation holds for a single electron system considering K1
transitions without retardations. Further, as discussed in
section 1.3, the oscillator strength f,, provides connexions
between quantum-mechanical and classical theory.

Equation 1.12 is derived usmg the Helsenberg matrix -
relations [151]

Wag, = (B, —EBo)2on) = —[H, 2)on = [H, 2}po-  (1.13)’

H is the Hamiltonian operator, and the square brackets denote
the commutator. Taking care to keep our quantities Hermitian
by using the Heisenberg relation alternately for the first and
second z,, of equation 1.7, we find the summed oscillator
strength:

Zn Jon = g% Z(En"E 0)Zonon
=_Mm z {H, z]o,,z.,,,—i—zo,.[H Zlon}-

Using closure, we express the summed oscillator strength in _
terms of properties of the ground (0) state alone: -

D Jon= — g3 {(H, e H, 2l}oo
=T {[[H, z]z]}oo'

(1.14)

(1.15)

Substituting H = _p_’ + V(r),

> Jon=— {[[ ele]) -mar, 2, o (119

The second term is zero if the potential V is a function only of
position. Using [, 2] = —1i% we can show that the first term
is unity. Thus the TRK sum-rule of equation 1.12 holds for
- any one-electron system.
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Bethe and Salpeter [25] also work out partial sum-rules

(their equations 61.4, 61.5) showing “that a change of principal

and orbital quantum numbers in the same sense is more
probable than a jump in the opposite sense”.

13. Oorrespt(;ndence between quantum-mechanical and classical
resul

The quantum-mechanical TRK sum-rule of equation 1.12

corresponds to the olmssical integrated power absorption for

forced oscillations by a charged oscillator. From equation

1 .5 and the TRK rule, we obtain the power absorption inte-

22,
gra.ted over all frequencies for a charged oscillator as 1 -—g for

any form of V(r) for the oscillator potential. This quantum-
mechanical result is in exact agreement with the classical
treatment. (See Heitler[98]section 5 for the harmonic oscillator
and Van Vleck [200] for the general classical oscillator.). In
fact, it was this correspondence between classical and quantum-
mechanical results which led Heisenberg to his choice of the
value of the commutator [p, z] = —i#.

The dispersion relation between the dispersive part of the
forward scattering amplitude F(w) and the absorption cross
section provides another connexion between quantum and
classical mechanics. We write the Kramers-Heisenberg dis-
ersion relation for a neutra.l atom (reference [98] sectior 19) in
the form,

et ¥ on '
. 1.17
Fo)=—5% T (L17)
;¢ an electromagnetic wave of very high frequency w, we can
negleoct w,, in the denominator and equation 1.17 reduces to

F(w0) = — — z fon = (1.18)

Thus dispersion theory and the TRK sum-rule give us the
classical Thomson value for the forward scattering amplitude
of very high frequency light scattered by an electron.

A third classical interpretation of the oscillator strength is
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found when Wwe compare the quantum-mechanical and classical
calculations of the electric polarizability. From gquantum-
mechanical second order time-independent perturbation theory
(reference [151] section 32), we have

a = (dipole moment/eleqgtric field)

2
=22 el 119)°
»B,~Fy (119
Expressing (z,,)? in terms of the oscillator strength f,,, by the
definition 1.7, we obtain

o = €2 Z” ey = ¢? Zﬂ by (1.20)

where the “spring constant” kg, = mwj,. This quantum-
mechanical result agrees with a classical calculation of « if we
interpret the oscillator strength f,, as the fraction of an electron
bound by a linear spring of spring constant k.

1.4. Dipole sum-rules '

In this section, we shall derive sum-rules of the form
S, W*f,, for a one-electron system [19, 25]. Here W is the
photon energy, and p = 41, 42, 3. The TRK sum-rule
equation 1.12 is the special case p = 0.

We can use these sum-rules to calculate different mean
energies for the photo-effect. We define the pth statistical
moment g, and the pth mean energy W, as follows:

s =fWPZ-%,dW. (.21,

W9 = (l“w//‘o).l,’ = (a“t)l/" . (1.22)

We have used’ u, = 1 for a one-electron system for electric
dipole transitions. df/dW is the oscillator strength per unit
energy. (Here we integrate over the continuum of photon
energies, while previously we summed over discrete photon
energies. The two notations are equivalent.)
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Since larger values of p weight higher values of W more
strongly, we have

We> Wo> W, >W_ >W._, (1.23)

the equalities holding only if df/dW has a smgle delta function
peak.

The sum-rule for W_, involves the caloulation of the polariza-
bility « discussed in section 1.3.. From equations 1.20 and the
definitions 1.21 and 1.22,

' _d¢.f..dW
dw :
o= = g Wa= s (129

We calculate u_, directly from the deﬁm'tion, using closure.

=3 = 3 St = 3R = 3R

s m W 1 (1.25)
- - 2m (%00

The harmonic mean energy W_, is inversely proportional to the
mean square radius (r2),, [127].

" We calculate u, using the matrix relation of seetion 1.2:

(B —Eon =2 (p,)on (1.26)

#1 =z Wfon = 2L;& Z (En"Eo)’zohzou

= S B = 2 Ean = e 00 = 5 (Dhoe
(1.27)

where T, is the expectation value of the kinetic energy.

In the one-electron case u, = W;. W, is called the mean
- energy, and is proportional to the mean kinetic energy.

We calculate ug using equation 1.26 and another matrix
relation corresponding to the classical relation that the accelera-
tion is proportional to the force:

E—Eem=1(3) 5 0



12 BASIC THEORY I, §1.4

9 v
j 22 =Z"W2f on = _ﬁn;_ z"(En—E 0)%20n%on

- i 2. ((3), eomrean (), 0

%2 /o2 2 ‘
SRET) 2 o,
00

m\ 922 3m N
TR, 12 _
Wz = [*3‘7;& (V V)oo] . . (1.30)
We find W, and g using the matrix relation 1.28 twice, giving
us ,
ams [ (9V |
=— % 1.
fa m [( 0z )2] 00 (1.31)
and ’

B e

We can use the above sum-rules to calculate the various mean
energies for photon absorption by the hydrogen atom. Our
work is only illustrative since the values of fy, for discrete
transitions and df/dW for the continuum (the Stobbe formula)
are known explicitly {25, 193]. But the sum-rule method, where
we need only the ground state wave function can be used for
other problems, where explicit calculations necessitating
. kmowledge of wave functions for excited states may be extremely
difficult. :

The electric polarizability « of hydrogen can be calculated
analytically using parabolic coordinates (reference [151],

‘section 32) giving o« = g a3, which by equation 1.24 gives

g8\ 12 ’ L . e
W= (6) Ry. (Here a,is the Bohr radius and 1 Ry = —2&—-)
’ 1]

Since (r%),, = 3af, we find W_, = 1 Ry. Since (T)e =1 Ry,
4 . -
W= 3 Ry. Finally (V2V)y, = 4€¥ad, giving W, =-(16/3)1/

P
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Ry. pjand W, are infinite because (6;7) has an r— singularity

at the origin. Thus equation 1.23 is satisfied: oo > (16/3)¥/2
> 4/3 > 1 > (8/9)V? for the various mean energies.

If the asymptotic form of dffdW at high energies is W—", the

above argument shows that 3 < n < 4 for hydrogen. (The
Stobbe formula gives n = 7/2.) In general the value of =
depends only on the form of the smgulanty in the potential
V(r) [127, 180, 217].
- 'We can also use these sum-rules to show a relation between
two well-known properties of the simple harmonic potential.
[181] For any distribution of oscillator strengths, we must have
W, > W_;. Using equations 1.25 and 1.27, we find

2y, > 1
m P02 5 T
or | | (1.33)
2

) 7
(Pg)oo(za)oo = g

which is in agreement with the Heisenberg uncertainty principle. ’
The equality W, = W_, holds only if df/dW is a Dirac delta
function, as it indeed is for the harmonic oscillator. Thus the
equality -in the Heisenberg principle and the single delta
function peak in the photo-effect both hold only for the ground
state of a simple harmonic oscillator.

The inequality in equation 1.33 is usually not very grea.t for
other potentials, for example, for the Coulomb potential
discussed above or for & one-dimensional, infinitely deep,
square well. For the latter

—6 & 72
(Pz)oo 2o = —'3— i 1-230 T (1.34)

Then W, is not much greater than W_;l, showing that the
oscillator density has & rather sharp peak. (Compare the

hydrogen atom case where W, = ‘—;- W_l.)



